Seyedeh Hadis Moghadam, Parisa-Sadat Ashofteh, Vijay P. Singh
{"title":"Sensitivity analysis of streamflow parameters with SWAT calibrated by NCEP CFSR and future runoff assessment with developed Monte Carlo model","authors":"Seyedeh Hadis Moghadam, Parisa-Sadat Ashofteh, Vijay P. Singh","doi":"10.1007/s00704-024-05157-5","DOIUrl":null,"url":null,"abstract":"<p>The present study analyzed sensitivity of flow parameters using SWAT and effect of climate change on surface water resources, considering uncertainty with Monte Carlo. For this purpose, output of nine-model related to fifth-climate change-report during baseline period 1971–2000 was weighted. Using Monte Carlo, 100 samples of probabilistic distribution of basin temperature and rainfall were generated. LARS-WG model was used for downscaling, then temperature and precipitation were calculated under RCP2.6 and RCP8.5 for future periods 2040–2069 and 2070–2099. SWAT was calibrated using observational-data and the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) (NCEP CFSR) global climate datasets and sensitivity of parameters affecting flow was analyzed. Results showed that observed-data had better performance than NCEP CFSR. Finally, future runoff was calculated under RCP2.6 and RCP8.5 for 2040–2069 and 2070–2099. Results showed that average annual runoff decreased by 84, 80, 82 and 80%, for 2040–2069 (RCP2.6 and RCP8.5) and for 2070–2099 (RCP2.6 and RCP8.5) relative to baseline, respectively.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00704-024-05157-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The present study analyzed sensitivity of flow parameters using SWAT and effect of climate change on surface water resources, considering uncertainty with Monte Carlo. For this purpose, output of nine-model related to fifth-climate change-report during baseline period 1971–2000 was weighted. Using Monte Carlo, 100 samples of probabilistic distribution of basin temperature and rainfall were generated. LARS-WG model was used for downscaling, then temperature and precipitation were calculated under RCP2.6 and RCP8.5 for future periods 2040–2069 and 2070–2099. SWAT was calibrated using observational-data and the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) (NCEP CFSR) global climate datasets and sensitivity of parameters affecting flow was analyzed. Results showed that observed-data had better performance than NCEP CFSR. Finally, future runoff was calculated under RCP2.6 and RCP8.5 for 2040–2069 and 2070–2099. Results showed that average annual runoff decreased by 84, 80, 82 and 80%, for 2040–2069 (RCP2.6 and RCP8.5) and for 2070–2099 (RCP2.6 and RCP8.5) relative to baseline, respectively.
期刊介绍:
Theoretical and Applied Climatology covers the following topics:
- climate modeling, climatic changes and climate forecasting, micro- to mesoclimate, applied meteorology as in agro- and forestmeteorology, biometeorology, building meteorology and atmospheric radiation problems as they relate to the biosphere
- effects of anthropogenic and natural aerosols or gaseous trace constituents
- hardware and software elements of meteorological measurements, including techniques of remote sensing