CCR5-mediated homing of regulatory T cells and monocytic-myeloid derived suppressor cells to dysfunctional endothelium contributes to early atherosclerosis
{"title":"CCR5-mediated homing of regulatory T cells and monocytic-myeloid derived suppressor cells to dysfunctional endothelium contributes to early atherosclerosis","authors":"Shamima Akhtar, Komal Sagar, Ambuj Roy, Milind P. Hote, Sudheer Arava, Alpana Sharma","doi":"10.1111/imm.13859","DOIUrl":null,"url":null,"abstract":"<p>A disbalance between immune regulatory cells and inflammatory cells is known to drive atherosclerosis. However, the exact mechanism is not clear. Here, we investigated the homing of immune regulatory cells, mainly, regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) subsets in asymptomatic coronary artery disease (CAD) risk factor-exposed young individuals (dyslipidemia [DLP] group) and stable CAD patients (CAD group). Compared with healthy controls (HCs), Tregs frequency was reduced in both DLP and CAD groups but expressed high levels of CCR5 in both groups. The frequency of monocytic-myeloid-derived suppressor cells (M-MDSCs) was increased while polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were decreased in CAD patients only. Interestingly, although unchanged in frequency, M-MDSCs of the DLP group expressed high levels of CCR5. Serum levels of chemokines (CCL5, CX3CL1, CCL26) and inflammatory cytokines (IL-6, IL-1β, IFN-γ, TNF-α) were higher in the DLP group. Stimulation with inflammatory cytokines augmented CCR5 expression in Tregs and M-MDSCs isolated from HCs. Activated endothelial cells showed elevated levels of CX3CL1 and CCL5 in vitro. Blocking CCR5 with D-Ala-peptide T-amide (DAPTA) increased Treg and M-MDSC frequency in C57Bl6 mice fed a high-fat diet. In accelerated atherosclerosis model, DAPTA treatment led to the formation of smooth muscle-rich plaque with less macrophages. Thus, we show that CCR5-CCL5 axis is instrumental in recruiting Tregs and M-MDSCs to dysfunctional endothelium in the asymptomatic phase of atherosclerosis contributing to atherosclerosis progression. Drugs targeting CCR5 in asymptomatic and CAD risk-factor/s-exposed individuals might be a novel therapeutic regime to diminish atherogenesis.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":"173 4","pages":"712-729"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imm.13859","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A disbalance between immune regulatory cells and inflammatory cells is known to drive atherosclerosis. However, the exact mechanism is not clear. Here, we investigated the homing of immune regulatory cells, mainly, regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) subsets in asymptomatic coronary artery disease (CAD) risk factor-exposed young individuals (dyslipidemia [DLP] group) and stable CAD patients (CAD group). Compared with healthy controls (HCs), Tregs frequency was reduced in both DLP and CAD groups but expressed high levels of CCR5 in both groups. The frequency of monocytic-myeloid-derived suppressor cells (M-MDSCs) was increased while polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were decreased in CAD patients only. Interestingly, although unchanged in frequency, M-MDSCs of the DLP group expressed high levels of CCR5. Serum levels of chemokines (CCL5, CX3CL1, CCL26) and inflammatory cytokines (IL-6, IL-1β, IFN-γ, TNF-α) were higher in the DLP group. Stimulation with inflammatory cytokines augmented CCR5 expression in Tregs and M-MDSCs isolated from HCs. Activated endothelial cells showed elevated levels of CX3CL1 and CCL5 in vitro. Blocking CCR5 with D-Ala-peptide T-amide (DAPTA) increased Treg and M-MDSC frequency in C57Bl6 mice fed a high-fat diet. In accelerated atherosclerosis model, DAPTA treatment led to the formation of smooth muscle-rich plaque with less macrophages. Thus, we show that CCR5-CCL5 axis is instrumental in recruiting Tregs and M-MDSCs to dysfunctional endothelium in the asymptomatic phase of atherosclerosis contributing to atherosclerosis progression. Drugs targeting CCR5 in asymptomatic and CAD risk-factor/s-exposed individuals might be a novel therapeutic regime to diminish atherogenesis.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.