The effect of aging on the mechanical properties of bulk molding compound with different fiber lengths

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Polymer Composites Pub Date : 2024-09-12 DOI:10.1002/pc.29067
Tsung‐Han Hsieh, Ting‐Yu Chang, Chih‐Chia Chen, Shang‐Nan Tsai
{"title":"The effect of aging on the mechanical properties of bulk molding compound with different fiber lengths","authors":"Tsung‐Han Hsieh, Ting‐Yu Chang, Chih‐Chia Chen, Shang‐Nan Tsai","doi":"10.1002/pc.29067","DOIUrl":null,"url":null,"abstract":"<jats:label/>Bulk molding compound (BMC) manufactured using fiber reinforced polymers (FRPs) has attracted extensive attention and is widely used because of its capability to fabricate structures with complex shapes. This study investigated the effects of aging on the mechanical properties of BMC composites made using an epoxy matrix and discontinuous carbon fibers of varying lengths. Tensile, compressive, and flexural tests were conducted. The results showed that longer fibers did not necessarily increase the moduli and strengths of BMC composites due to stress concentrations resulting from the curling and entanglement of the longer fibers. When aged, BMC composites using shorter carbon fibers exhibited more significant reductions in moduli and strengths due to higher void contents, resulting in more severe matrix epoxy degradation. When comparing epoxy and BMC, BMC experienced greater reductions in moduli and strengths even though carbon fiber, a type of artificial fiber, should be less affected by aging. This is because aging not only degraded the matrix epoxy but also affected the adhesion between the fibers and the matrix, leading to a larger displacement of the fibers, resulting in a more severe reduction in the mechanical properties of the BMC composites.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>BMC composites were manufactured using epoxy and discontinuous carbon fibers.</jats:list-item> <jats:list-item>Longer fibers did not necessarily increase strengths due to entanglement.</jats:list-item> <jats:list-item>BMC using shorter fibers had more voids and hence degraded more severely.</jats:list-item> <jats:list-item>BMC showed greater strength reductions than epoxy due to matrix degradation.</jats:list-item> <jats:list-item>Degradation of matrix epoxy affected the adhesion between fibers and matrix.</jats:list-item> </jats:list>","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"26 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.29067","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Bulk molding compound (BMC) manufactured using fiber reinforced polymers (FRPs) has attracted extensive attention and is widely used because of its capability to fabricate structures with complex shapes. This study investigated the effects of aging on the mechanical properties of BMC composites made using an epoxy matrix and discontinuous carbon fibers of varying lengths. Tensile, compressive, and flexural tests were conducted. The results showed that longer fibers did not necessarily increase the moduli and strengths of BMC composites due to stress concentrations resulting from the curling and entanglement of the longer fibers. When aged, BMC composites using shorter carbon fibers exhibited more significant reductions in moduli and strengths due to higher void contents, resulting in more severe matrix epoxy degradation. When comparing epoxy and BMC, BMC experienced greater reductions in moduli and strengths even though carbon fiber, a type of artificial fiber, should be less affected by aging. This is because aging not only degraded the matrix epoxy but also affected the adhesion between the fibers and the matrix, leading to a larger displacement of the fibers, resulting in a more severe reduction in the mechanical properties of the BMC composites.Highlights BMC composites were manufactured using epoxy and discontinuous carbon fibers. Longer fibers did not necessarily increase strengths due to entanglement. BMC using shorter fibers had more voids and hence degraded more severely. BMC showed greater strength reductions than epoxy due to matrix degradation. Degradation of matrix epoxy affected the adhesion between fibers and matrix.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
老化对不同纤维长度块状模塑料机械性能的影响
使用纤维增强聚合物(FRP)制造的团状模塑料(BMC)因其能够制造形状复杂的结构而受到广泛关注和应用。本研究调查了老化对使用环氧树脂基体和不同长度的非连续碳纤维制造的 BMC 复合材料机械性能的影响。研究人员进行了拉伸、压缩和弯曲试验。结果表明,较长的纤维并不一定会提高 BMC 复合材料的模量和强度,这是因为较长纤维的卷曲和缠结会导致应力集中。在老化过程中,使用较短碳纤维的 BMC 复合材料由于空隙含量较高,模量和强度下降更为明显,导致基体环氧树脂降解更为严重。在对环氧树脂和 BMC 进行比较时,尽管碳纤维这种人造纤维受老化的影响应该较小,但 BMC 的模量和强度却下降得更多。这是因为老化不仅会使基体环氧树脂降解,还会影响纤维与基体之间的粘附力,导致纤维发生更大的位移,从而使 BMC 复合材料的机械性能下降得更厉害。由于缠结,较长的纤维并不一定能提高强度。使用较短纤维的 BMC 有更多空隙,因此降解更严重。由于基体降解,BMC 比环氧树脂的强度降低得更多。基体环氧树脂的降解影响了纤维与基体之间的粘附性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Composites
Polymer Composites 工程技术-材料科学:复合
CiteScore
7.50
自引率
32.70%
发文量
673
审稿时长
3.1 months
期刊介绍: Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.
期刊最新文献
Magnetic elastomer composites with tunable magnetization behaviors for flexible magnetic transducers Experimental investigation of the compressive behavior of epoxy nanocomposites reinforced with straight and helical carbon nanotubes The effect of silane-modified carbon black and nano-silica, individually and in combination, on the performance of ethylene–propylene–diene monomer rubber Enhancement of mechanical and structural characteristics through the hybridization of carbon fiber with Cordia-dichotoma/polyester composite Impact of graphite on tribo-mechanical, structural, and thermal behaviors of polyoxymethylene copolymer/glass fiber hybrid composites via Taguchi optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1