Localized data‐driven consensus control for continuous‐time multi‐agent systems

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Robust and Nonlinear Control Pub Date : 2024-09-09 DOI:10.1002/rnc.7625
Zeze Chang, Zhongkui Li
{"title":"Localized data‐driven consensus control for continuous‐time multi‐agent systems","authors":"Zeze Chang, Zhongkui Li","doi":"10.1002/rnc.7625","DOIUrl":null,"url":null,"abstract":"This article proposes a <jats:italic>localized</jats:italic> data‐driven consensus framework for leader‐follower multi‐agent systems with unknown continuous‐time agent dynamics for both noiseless and noisy data scenarios. In this setting, each follower calculates its feedback control gain based on its locally sampled data, including the states, state derivatives, and inputs. We propose novel distributed control protocols that synchronize the distinct dynamic feedback gains and achieve leader‐follower consensus. Design methods are provided for the devised data‐based consensus control algorithms, which rely on low‐dimensional linear matrix inequalities. The validity of the developed algorithms is demonstrated via simulation examples.","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"9 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rnc.7625","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a localized data‐driven consensus framework for leader‐follower multi‐agent systems with unknown continuous‐time agent dynamics for both noiseless and noisy data scenarios. In this setting, each follower calculates its feedback control gain based on its locally sampled data, including the states, state derivatives, and inputs. We propose novel distributed control protocols that synchronize the distinct dynamic feedback gains and achieve leader‐follower consensus. Design methods are provided for the devised data‐based consensus control algorithms, which rely on low‐dimensional linear matrix inequalities. The validity of the developed algorithms is demonstrated via simulation examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续时间多代理系统的局部数据驱动共识控制
本文针对具有未知连续时间代理动态的领导者-跟随者多代理系统,提出了一种局部数据驱动的共识框架,适用于无噪声和噪声数据场景。在这种情况下,每个跟随者根据其本地采样数据(包括状态、状态导数和输入)计算其反馈控制增益。我们提出了新颖的分布式控制协议,可同步不同的动态反馈增益,实现领导者与追随者的共识。我们为所设计的基于数据的共识控制算法提供了设计方法,这些算法依赖于低维线性矩阵不等式。通过仿真实例证明了所开发算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
期刊最新文献
Issue Information Issue Information Nonlinear sliding mode predictive trajectory tracking control of underactuated marine vehicles: Theory and experiment Improved functional interval observer for mecanum‐wheels omnidirectional automated guided vehicle Prescribed‐time distributed direct estimation under relative state measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1