Event‐triggered adaptive neural network‐based optimal control of strictly feedback switched nonlinear systems with state constraints

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Robust and Nonlinear Control Pub Date : 2024-08-27 DOI:10.1002/rnc.7602
Jie Ruan, Yuhui Fu, Yuan Fan
{"title":"Event‐triggered adaptive neural network‐based optimal control of strictly feedback switched nonlinear systems with state constraints","authors":"Jie Ruan, Yuhui Fu, Yuan Fan","doi":"10.1002/rnc.7602","DOIUrl":null,"url":null,"abstract":"In this article, we present an innovative approach for controlling nonlinear switched systems (NSSs) with strict feedback utilizing adaptive neural networks (ANNs). Our methodology encompasses several facets, addressing key challenges inherent to these systems. To commence, we tackle the constrained nature of NSSs with strict feedback by designing a barrier Lyapunov function. This function ensures that all states within the switched systems remain within prescribed constraints. Additionally, we harness neural networks (NNs) to approximate the unknown nonlinear functions inherent to the system. Furthermore, we deploy an ANN state observer to estimate unmeasurable states. Our approach then proceeds to develop a cost function for the subsystem. Building upon this, we apply the Hamiltonian–Jacobi–Bellman (HJB) solution in conjunction with observer and behavior critic architectures, all rooted in backstepping control (BC) principles. This integration yields both a virtual optimal controller and a real optimal controller. Furthermore, we introduce a novel ANN event‐triggered control (ETC) strategy tailored explicitly for strictly feedback systems. This strategy proves highly effective in reducing the utilization of communication resources and eliminating the occurrence of Zeno behavior. Our analysis provides formal proof that all states within the closed‐loop system exhibit half‐leaf consistency and are ultimately bounded, regardless of arbitrary switching conditions. Finally, we substantiate the efficacy and viability of our control scheme through comprehensive numerical simulations.","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"6 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rnc.7602","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present an innovative approach for controlling nonlinear switched systems (NSSs) with strict feedback utilizing adaptive neural networks (ANNs). Our methodology encompasses several facets, addressing key challenges inherent to these systems. To commence, we tackle the constrained nature of NSSs with strict feedback by designing a barrier Lyapunov function. This function ensures that all states within the switched systems remain within prescribed constraints. Additionally, we harness neural networks (NNs) to approximate the unknown nonlinear functions inherent to the system. Furthermore, we deploy an ANN state observer to estimate unmeasurable states. Our approach then proceeds to develop a cost function for the subsystem. Building upon this, we apply the Hamiltonian–Jacobi–Bellman (HJB) solution in conjunction with observer and behavior critic architectures, all rooted in backstepping control (BC) principles. This integration yields both a virtual optimal controller and a real optimal controller. Furthermore, we introduce a novel ANN event‐triggered control (ETC) strategy tailored explicitly for strictly feedback systems. This strategy proves highly effective in reducing the utilization of communication resources and eliminating the occurrence of Zeno behavior. Our analysis provides formal proof that all states within the closed‐loop system exhibit half‐leaf consistency and are ultimately bounded, regardless of arbitrary switching conditions. Finally, we substantiate the efficacy and viability of our control scheme through comprehensive numerical simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于事件触发自适应神经网络的具有状态约束的严格反馈开关非线性系统的优化控制
本文介绍了一种利用自适应神经网络(ANN)控制具有严格反馈的非线性开关系统(NSS)的创新方法。我们的方法涵盖多个方面,解决了这些系统固有的关键难题。首先,我们通过设计一个障碍 Lyapunov 函数来解决具有严格反馈的 NSS 的约束性质。该函数可确保开关系统内的所有状态都保持在规定的约束条件内。此外,我们利用神经网络(NN)来逼近系统固有的未知非线性函数。此外,我们还部署了一个 ANN 状态观测器来估计不可测量的状态。然后,我们继续为子系统开发成本函数。在此基础上,我们将哈密顿-贾可比-贝尔曼(HJB)解决方案与观测器和行为批判架构相结合,所有这些都植根于后步法控制(BC)原理。这种整合产生了虚拟最优控制器和实际最优控制器。此外,我们还引入了一种新颖的 ANN 事件触发控制(ETC)策略,专门为严格反馈系统量身定制。事实证明,这种策略在减少通信资源的使用和消除芝诺行为方面非常有效。我们的分析正式证明,闭环系统内的所有状态都表现出半叶一致性,并且最终都是有界的,与任意开关条件无关。最后,我们通过全面的数值模拟证实了我们控制方案的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
期刊最新文献
Issue Information Issue Information Nonlinear sliding mode predictive trajectory tracking control of underactuated marine vehicles: Theory and experiment Improved functional interval observer for mecanum‐wheels omnidirectional automated guided vehicle Prescribed‐time distributed direct estimation under relative state measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1