Using protein–metabolite interactions to identify novel plant metabolite receptors

IF 7.3 2区 生物学 Q1 PLANT SCIENCES Phytochemistry Reviews Pub Date : 2024-08-27 DOI:10.1007/s11101-024-10005-5
Hillary D. Fischer, Alisdair Fernie, Aleksandra Skirycz
{"title":"Using protein–metabolite interactions to identify novel plant metabolite receptors","authors":"Hillary D. Fischer, Alisdair Fernie, Aleksandra Skirycz","doi":"10.1007/s11101-024-10005-5","DOIUrl":null,"url":null,"abstract":"<p>An increasing interest in plant protein–metabolite interactions has occurred in the past decade due to advancements in technology and methodology. Metabolite receptors especially are of great importance in plant research due to their role in cell signaling for the regulation of growth and development and environmental sensing. Energy, carbon, and nitrogen signaling through AMPK/SNF1/SnRK1, TOR, and PII receptors are core components conserved across Kingdoms of Life and what is known in plants often came first from study in non-plant systems. In contrast, known phytohormone receptors are relatively distinct to plants and identified within a plant system. Therefore, this review will give an update on known plant receptors for energy, carbon, and nitrogen signaling as well as phytohormones, focusing on the detection methods used to provide our current understanding of their function in the plant. Finally, it will address emerging strategies for identifying protein–metabolite interactions to discover novel plant receptors.</p>","PeriodicalId":733,"journal":{"name":"Phytochemistry Reviews","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11101-024-10005-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An increasing interest in plant protein–metabolite interactions has occurred in the past decade due to advancements in technology and methodology. Metabolite receptors especially are of great importance in plant research due to their role in cell signaling for the regulation of growth and development and environmental sensing. Energy, carbon, and nitrogen signaling through AMPK/SNF1/SnRK1, TOR, and PII receptors are core components conserved across Kingdoms of Life and what is known in plants often came first from study in non-plant systems. In contrast, known phytohormone receptors are relatively distinct to plants and identified within a plant system. Therefore, this review will give an update on known plant receptors for energy, carbon, and nitrogen signaling as well as phytohormones, focusing on the detection methods used to provide our current understanding of their function in the plant. Finally, it will address emerging strategies for identifying protein–metabolite interactions to discover novel plant receptors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用蛋白质与代谢物的相互作用识别新型植物代谢物受体
在过去十年中,由于技术和方法的进步,人们对植物蛋白质与代谢物之间相互作用的兴趣日益浓厚。代谢物受体在调控生长发育和环境感知的细胞信号传导中发挥着重要作用,因此在植物研究中尤其具有重要意义。通过 AMPK/SNF1/SnRK1、TOR 和 PII 受体进行的能量、碳和氮信号传导是整个生命王国中保留下来的核心成分,植物中的已知信息往往首先来自于对非植物系统的研究。相比之下,已知的植物激素受体与植物相对不同,是在植物系统中发现的。因此,本综述将介绍已知植物能量、碳和氮信号传导受体以及植物激素受体的最新情况,重点介绍用于了解它们在植物中功能的检测方法。最后,本综述还将介绍新出现的蛋白质-代谢物相互作用鉴定策略,以发现新型植物受体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytochemistry Reviews
Phytochemistry Reviews PLANT SCIENCES-
CiteScore
16.30
自引率
2.60%
发文量
54
审稿时长
2 months
期刊介绍: Phytochemistry Reviews is the sole review journal encompassing all facets of phytochemistry. It publishes peer-reviewed papers in six issues annually, including topical issues often stemming from meetings organized by the Phytochemical Society of Europe. Additionally, the journal welcomes original review papers that contribute to advancing knowledge in various aspects of plant chemistry, function, biosynthesis, effects on plant and animal physiology, pathology, and their application in agriculture and industry. Invited meeting papers are supplemented with additional review papers, providing a comprehensive overview of the current status across all areas of phytochemistry.
期刊最新文献
Natural products against gram-negative bacteria: promising antimicrobials in future complementary medicine Phytochemistry and therapeutic potential of the genus Asphodelus L.: an update Fruit juices: chemical compositions and health benefits Chalcone and derived natural products: versatile scaffolds for multiple targets in treatment of Type 2 diabetes Recent advances on anti-diabetic potential of pigmented phytochemicals in foods and medicinal plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1