Humidity‐adaptive, mechanically robust, and recyclable bioplastic films amplified by nanoconfined assembly

Aggregate Pub Date : 2024-08-14 DOI:10.1002/agt2.643
Siheng Wang, Lei Zhang, Zhuomin Wang, Zhanqian Song, He Liu, Ziqi Tian, Xu Xu
{"title":"Humidity‐adaptive, mechanically robust, and recyclable bioplastic films amplified by nanoconfined assembly","authors":"Siheng Wang, Lei Zhang, Zhuomin Wang, Zhanqian Song, He Liu, Ziqi Tian, Xu Xu","doi":"10.1002/agt2.643","DOIUrl":null,"url":null,"abstract":"Poly(vinyl alcohol) (PVA) is biodegradable, recyclable, and has high tensile strength. Therefore, it is ideal for the development of environment‐friendly sustainable bioplastics. However, at elevated humidity, the mechanical properties of PVA bioplastic films undergo degradation owing to their intrinsic hydrophilic and hygroscopic nature, hindering their applications. This study proposes a nanoconfined assembly strategy to produce humidity‐adaptive, mechanically robust, and recyclable bioplastic film. The strong hydrogen bonds between PVA and cellulose nanofibrils inhibit the penetration of water molecules into the film to promote humidity resistance. Further, the robust coordination interactions between bentonite nanoplates, PVA, and cellulose nanofibrils restrict the slip of polymer chains during deformation, leading to enhanced mechanical properties. Benefiting from the nanoconfined assembly architecture in aggregated composites, the resulting reinforced PVA film simultaneously exhibits strength, stiffness, toughness, fracture energy, and tearing energy of 55.9 MPa, 1,275.6 MPa, 162.9 MJ m<jats:sup>−3</jats:sup>, 630.9 kJ m<jats:sup>−2</jats:sup>, and 465.0 kJ m<jats:sup>−2</jats:sup>, respectively. Moreover, the film maintains a strength of approximately 48.7 MPa even at 80% relative humidity for 180 days. This efficient design strategy applies to diverse scales and structured cellulose biomacromolecules. Moreover, it facilitates the application of recyclable high‐performance bioplastic films to settings that require high humidity tolerance.","PeriodicalId":501414,"journal":{"name":"Aggregate","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/agt2.643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(vinyl alcohol) (PVA) is biodegradable, recyclable, and has high tensile strength. Therefore, it is ideal for the development of environment‐friendly sustainable bioplastics. However, at elevated humidity, the mechanical properties of PVA bioplastic films undergo degradation owing to their intrinsic hydrophilic and hygroscopic nature, hindering their applications. This study proposes a nanoconfined assembly strategy to produce humidity‐adaptive, mechanically robust, and recyclable bioplastic film. The strong hydrogen bonds between PVA and cellulose nanofibrils inhibit the penetration of water molecules into the film to promote humidity resistance. Further, the robust coordination interactions between bentonite nanoplates, PVA, and cellulose nanofibrils restrict the slip of polymer chains during deformation, leading to enhanced mechanical properties. Benefiting from the nanoconfined assembly architecture in aggregated composites, the resulting reinforced PVA film simultaneously exhibits strength, stiffness, toughness, fracture energy, and tearing energy of 55.9 MPa, 1,275.6 MPa, 162.9 MJ m−3, 630.9 kJ m−2, and 465.0 kJ m−2, respectively. Moreover, the film maintains a strength of approximately 48.7 MPa even at 80% relative humidity for 180 days. This efficient design strategy applies to diverse scales and structured cellulose biomacromolecules. Moreover, it facilitates the application of recyclable high‐performance bioplastic films to settings that require high humidity tolerance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过纳米约束组装放大的湿度适应性强、机械坚固且可回收的生物塑料薄膜
聚乙烯醇(PVA)可生物降解、可回收,并且具有很高的拉伸强度。因此,它是开发环境友好型可持续生物塑料的理想材料。然而,在湿度升高的情况下,PVA 生物塑料薄膜的机械性能会因其内在的亲水性和吸湿性而发生退化,从而阻碍其应用。本研究提出了一种纳米约束组装策略,以生产湿度适应性强、机械坚固且可回收的生物塑料薄膜。PVA 和纤维素纳米纤维之间的强氢键抑制了水分子对薄膜的渗透,从而提高了薄膜的防潮性。此外,膨润土纳米板、PVA 和纤维素纳米纤维之间强大的配位相互作用限制了聚合物链在变形过程中的滑移,从而提高了机械性能。得益于聚合复合材料中的纳米约束装配结构,由此产生的增强型 PVA 薄膜同时表现出 55.9 MPa、1,275.6 MPa、162.9 MJ m-3、630.9 kJ m-2 和 465.0 kJ m-2 的强度、刚度、韧性、断裂能和撕裂能。此外,即使在相对湿度为 80% 的条件下,薄膜也能在 180 天内保持约 48.7 兆帕的强度。这种高效的设计策略适用于不同尺度和结构的纤维素生物大分子。此外,它还有助于将可回收的高性能生物塑料薄膜应用到需要高耐湿性的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Droplets Cas13a‐RPA measurement delineates potential role for plasma circWDR37 in colorectal cancer Aggregation‐based dual‐target probe for dual‐colour super‐resolution monitoring mitophagy and evaluating drugs regulating mitochondria A universal gelation strategy of bivalent anions to construct nanofibrous lysozyme hydrogels for immunomemory anti‐recurrence of diabetic wound infection by activating the cGAS‐STING pathway Near‐room‐temperature π‐conjugated nematic liquid crystals in molecules with a flexible seven‐membered ring structure Spin‐coating fabrication of high‐yield and uniform organic thin‐film transistors via a primer template growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1