Enhanced absorption in thin-film silicon solar cell using buried silver nanoparticles

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Indian Journal of Physics Pub Date : 2024-08-15 DOI:10.1007/s12648-024-03387-x
Mohammad Ismaeel Zare Davijani, Abdollah Abbasi, Hassan Khalesi
{"title":"Enhanced absorption in thin-film silicon solar cell using buried silver nanoparticles","authors":"Mohammad Ismaeel Zare Davijani, Abdollah Abbasi, Hassan Khalesi","doi":"10.1007/s12648-024-03387-x","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the enhancement of absorption in thin-film silicon solar cells using rectangular prism nanoparticles, analyzed through the finite-difference time-domain method. The study incorporates perfectly matched layer boundaries and periodic boundary conditions to accurately model light interaction. Monitors placed 5 nm within the silicon layer are used to assess input and output light intensities and minimize undesired reflections. The primary focus is on studying the impact of nanoparticle positioning within the silicon layer (referred to as buried nanoparticles) on absorption enhancement. Results indicate that absorption enhancement increases as nanoparticles are buried deeper into the silicon absorber layer, up to a depth of 60 nm. However, beyond this depth (up to 80 nm), the enhancement diminishes, achieving only 40% of the maximum enhancement observed. When nanoparticles are buried 100 nm into the silicon absorber layer, the absorption enhancement reaches 84%, representing the highest reported enhancement in this study.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"29 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03387-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the enhancement of absorption in thin-film silicon solar cells using rectangular prism nanoparticles, analyzed through the finite-difference time-domain method. The study incorporates perfectly matched layer boundaries and periodic boundary conditions to accurately model light interaction. Monitors placed 5 nm within the silicon layer are used to assess input and output light intensities and minimize undesired reflections. The primary focus is on studying the impact of nanoparticle positioning within the silicon layer (referred to as buried nanoparticles) on absorption enhancement. Results indicate that absorption enhancement increases as nanoparticles are buried deeper into the silicon absorber layer, up to a depth of 60 nm. However, beyond this depth (up to 80 nm), the enhancement diminishes, achieving only 40% of the maximum enhancement observed. When nanoparticles are buried 100 nm into the silicon absorber layer, the absorption enhancement reaches 84%, representing the highest reported enhancement in this study.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用埋银纳米粒子增强薄膜硅太阳能电池的吸收能力
本文通过有限差分时域法分析,研究了使用矩形棱镜纳米粒子增强薄膜硅太阳能电池吸收的问题。研究结合了完全匹配的层边界和周期性边界条件,以准确模拟光的相互作用。放置在硅层内 5 nm 处的监测器用于评估输入和输出光强度,并最大限度地减少不必要的反射。主要重点是研究硅层内纳米粒子定位(称为埋入纳米粒子)对吸收增强的影响。结果表明,随着纳米粒子埋入硅吸收层的深度增加,吸收增强效果也随之增加,最深可达 60 纳米。然而,超过这个深度(最多 80 纳米),增强效果就会减弱,仅为观察到的最大增强效果的 40%。当纳米粒子埋入硅吸收层 100 nm 时,吸收增强率达到 84%,是本研究中报告的最高增强率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
期刊最新文献
Enhancing microstructure and magnetic properties of ribbons of Cu–Co–Ti alloy through ball milling: experimental insights and theoretical perspectives The electrical characterization of V2O5/p-Si prepared by spray pyrolysis technique using perfume atomizer Saturation effect in confined quantum systems with energy-dependent potentials Radiative neutron capture reaction rates for stellar nucleosynthesis Investigation of characteristics of ionospheric vertical plasma drift during sunset over the mid-latitude station Nicosia, Cyprus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1