{"title":"Synthesis of ZIF-8/chitosan composites for Cu2+ removal from water.","authors":"Ni Liao,Furong Li,Xiuli Huang,Yi Zhang","doi":"10.1080/09593330.2024.2401158","DOIUrl":null,"url":null,"abstract":"In this work, a kind of novel Chitosan (Cs)-doped zeolite imidazole framework (ZIF-8@Cs) with a larger surface area and a smaller pore size was synthesised via a facial solvothermal approach and applied to remove Cu2+ from mine wastewater. Compared to nondoped ZIF-8, ZIF-8@Cs exhibited a stronger adsorption performance and removal efficiency. The reason was that ZIF-8@Cs doped by the Cs could suppress the aggregation and increase the monodispersity of ZIF-8. Using the high-performance ZIF-8@Cs, as a novel adsorbent, was successfully developed for the efficient removal of Cu2+ from mine wastewater. Various parameters, such as contact time, initial Cu2+ concentration, adsorbent dosage, and pH, were investigated. The results showed that a removal efficiency of 85% was obtained at 4 h contact time for a Cu2+ concentration of 30 mg/L at the optimum pH of 6.0. Equilibrium data were analysed using different isothermal models and kinetic models, analytic results indicated that the capture of Cu2+ by ZIF-8@Cs could favourably comply with the pseudo-first-order kinetic model and Langmuir isotherm model. The single-layer adsorption of Cu2+ on ZIF-8@Cs was dominated by diffusional mass transfer. Additionally, the results of the thermodynamic analysis indicated that the adsorption of Cu2+ by ZIF-8/Cs was a spontaneous, exothermic, and ordered process. Overall, the results reported herein indicated that ZIF-8/Cs with high adsorption efficiency are very attractive and imply a potential practical application for the removal of potentially toxic elements in wastewater.","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":"35 1","pages":"1-13"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2401158","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a kind of novel Chitosan (Cs)-doped zeolite imidazole framework (ZIF-8@Cs) with a larger surface area and a smaller pore size was synthesised via a facial solvothermal approach and applied to remove Cu2+ from mine wastewater. Compared to nondoped ZIF-8, ZIF-8@Cs exhibited a stronger adsorption performance and removal efficiency. The reason was that ZIF-8@Cs doped by the Cs could suppress the aggregation and increase the monodispersity of ZIF-8. Using the high-performance ZIF-8@Cs, as a novel adsorbent, was successfully developed for the efficient removal of Cu2+ from mine wastewater. Various parameters, such as contact time, initial Cu2+ concentration, adsorbent dosage, and pH, were investigated. The results showed that a removal efficiency of 85% was obtained at 4 h contact time for a Cu2+ concentration of 30 mg/L at the optimum pH of 6.0. Equilibrium data were analysed using different isothermal models and kinetic models, analytic results indicated that the capture of Cu2+ by ZIF-8@Cs could favourably comply with the pseudo-first-order kinetic model and Langmuir isotherm model. The single-layer adsorption of Cu2+ on ZIF-8@Cs was dominated by diffusional mass transfer. Additionally, the results of the thermodynamic analysis indicated that the adsorption of Cu2+ by ZIF-8/Cs was a spontaneous, exothermic, and ordered process. Overall, the results reported herein indicated that ZIF-8/Cs with high adsorption efficiency are very attractive and imply a potential practical application for the removal of potentially toxic elements in wastewater.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current