Asad Naseem, Yasir A. Haleem, Sheheera Irfan, Muhammad Usman, Naseeb Ahmad, Muhammad Arshad, Muhammad Imran Irshad, Muhammad Farooq Saleem, Rashid Khan
{"title":"Enhanced efficiency of MoS2/SnO2 nanocomposite as a catalyst for the photodegradation of methylene blue","authors":"Asad Naseem, Yasir A. Haleem, Sheheera Irfan, Muhammad Usman, Naseeb Ahmad, Muhammad Arshad, Muhammad Imran Irshad, Muhammad Farooq Saleem, Rashid Khan","doi":"10.1557/s43578-024-01426-1","DOIUrl":null,"url":null,"abstract":"<p>In this work, the characteristics of MoS<sub>2</sub> and its nanocomposite with SnO<sub>2</sub> for photocatalytic degradation of methylene blue have been investigated. The MoS<sub>2</sub> and MoS<sub>2</sub>/SnO<sub>2</sub> nanocomposites were synthesized by the hydrothermal method. SEM analysis shows the flower-like structure of MoS<sub>2</sub> while MoS<sub>2</sub>/SnO<sub>2</sub> nanocomposites shows grain-like structure. The EDX analysis of the MoS<sub>2</sub> and MoS<sub>2</sub>/SnO<sub>2</sub> nanocomposites confirm the samples were mainly composed of Mo, S, Sn, and O atoms and the XRD patterns confirm hexagonal and rhombohedral phases, respectively. The FTIR spectra indicate the presence of both hydroxyl and carboxyl functional groups at the sample's surface. The UV–Visible spectroscopy findings witness both samples are being active in the visible range. Further, the band gap estimation through Tauc plot supports the assertion that these materials could be an efficient catalyst for photodegradation. Furthermore, the photodegradation of methylene blue (used as a dye) findings declare the maximum efficiency of 93% by using MoS<sub>2</sub>/SnO<sub>2</sub> nanocomposite as a catalyst.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01426-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the characteristics of MoS2 and its nanocomposite with SnO2 for photocatalytic degradation of methylene blue have been investigated. The MoS2 and MoS2/SnO2 nanocomposites were synthesized by the hydrothermal method. SEM analysis shows the flower-like structure of MoS2 while MoS2/SnO2 nanocomposites shows grain-like structure. The EDX analysis of the MoS2 and MoS2/SnO2 nanocomposites confirm the samples were mainly composed of Mo, S, Sn, and O atoms and the XRD patterns confirm hexagonal and rhombohedral phases, respectively. The FTIR spectra indicate the presence of both hydroxyl and carboxyl functional groups at the sample's surface. The UV–Visible spectroscopy findings witness both samples are being active in the visible range. Further, the band gap estimation through Tauc plot supports the assertion that these materials could be an efficient catalyst for photodegradation. Furthermore, the photodegradation of methylene blue (used as a dye) findings declare the maximum efficiency of 93% by using MoS2/SnO2 nanocomposite as a catalyst.
期刊介绍:
Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome.
• Novel materials discovery
• Electronic, photonic and magnetic materials
• Energy Conversion and storage materials
• New thermal and structural materials
• Soft materials
• Biomaterials and related topics
• Nanoscale science and technology
• Advances in materials characterization methods and techniques
• Computational materials science, modeling and theory