{"title":"Point cluster analysis using weighted random labeling","authors":"Yukio Sadahiro, Ikuho Yamada","doi":"10.1007/s10109-024-00447-y","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a new method of point cluster analysis. There are at least three important points that we need to consider in the evaluation of point clusters. The first is spatial inhomogeneity, i.e., the inhomogeneity of locations where points can be located. The second is aspatial inhomogeneity, which indicates the inhomogeneity of point characteristics. The third is an explicit representation of the geographic scale of analysis. This paper proposes a method that considers these points in a statistical framework. We develop two measures of point clusters: local and global. The former permits us to discuss the spatial variation in point clusters, while the latter indicates the global tendency of point clusters. To test the method’s validity, this paper applies it to the analysis of hypothetical and real datasets. The results supported the soundness of the proposed method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10109-024-00447-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new method of point cluster analysis. There are at least three important points that we need to consider in the evaluation of point clusters. The first is spatial inhomogeneity, i.e., the inhomogeneity of locations where points can be located. The second is aspatial inhomogeneity, which indicates the inhomogeneity of point characteristics. The third is an explicit representation of the geographic scale of analysis. This paper proposes a method that considers these points in a statistical framework. We develop two measures of point clusters: local and global. The former permits us to discuss the spatial variation in point clusters, while the latter indicates the global tendency of point clusters. To test the method’s validity, this paper applies it to the analysis of hypothetical and real datasets. The results supported the soundness of the proposed method.