Enhanced stability and decreased size limit for magnetic vortex state in thin permalloy nanodisk by radial modulation of thickness

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research Pub Date : 2024-09-06 DOI:10.1557/s43578-024-01431-4
Akhila Priya Kotti, Amaresh Chandra Mishra
{"title":"Enhanced stability and decreased size limit for magnetic vortex state in thin permalloy nanodisk by radial modulation of thickness","authors":"Akhila Priya Kotti, Amaresh Chandra Mishra","doi":"10.1557/s43578-024-01431-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Magnetization reversal in thin cylindrical nanodisks with radius between 20 and 100 <i>nm</i> is investigated with particular emphasis to modulation of disk thickness. The nanodisk is kept 1 <i>nm</i> thin at the center, whereas it gradually thickens to 21 <i>nm</i> at the periphery. The thickness modulation stabilizes the vortex closure state as the ground state in nanodisk for radius as low as 20 <i>nm</i>. An onion state appears at remanence during in-plane magnetization reversal. Nudged elastic band method verifies that the vortex state is highly stable in all the nanodisks. In the nanodisk of 100 <i>nm</i> radius, the vortex state requires an energy of 2677 <i>kT</i> to transit into onion state where <i>kT</i> is thermal energy at room temperature. This stability however reduces with size of nanodisk and the smallest nanodisk of 20 <i>nm</i> radius has to surpass an energy barrier of 120 <i>kT</i> to topple over to onion state.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"4 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01431-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetization reversal in thin cylindrical nanodisks with radius between 20 and 100 nm is investigated with particular emphasis to modulation of disk thickness. The nanodisk is kept 1 nm thin at the center, whereas it gradually thickens to 21 nm at the periphery. The thickness modulation stabilizes the vortex closure state as the ground state in nanodisk for radius as low as 20 nm. An onion state appears at remanence during in-plane magnetization reversal. Nudged elastic band method verifies that the vortex state is highly stable in all the nanodisks. In the nanodisk of 100 nm radius, the vortex state requires an energy of 2677 kT to transit into onion state where kT is thermal energy at room temperature. This stability however reduces with size of nanodisk and the smallest nanodisk of 20 nm radius has to surpass an energy barrier of 120 kT to topple over to onion state.

Graphic abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过径向调节厚度增强薄超耐热合金纳米盘中磁涡旋态的稳定性并降低其尺寸限制
摘要 研究了半径介于 20 纳米和 100 纳米之间的薄圆柱形纳米盘中的磁化反转,特别强调了盘厚度的调节。纳米盘在中心保持 1 nm 的厚度,而在外围则逐渐增厚到 21 nm。在半径低至 20 纳米的纳米盘中,厚度调制使涡旋闭合态稳定为基态。在平面内磁化反转时,洋葱态出现在剩磁处。裸弹带法验证了涡旋态在所有纳米盘中都是高度稳定的。在半径为 100 nm 的纳米盘中,涡旋态需要 2677 kT 的能量才能过渡到洋葱态,其中 kT 是室温下的热能。然而,这种稳定性随着纳米盘尺寸的增大而减弱,最小的半径为 20 纳米的纳米盘必须超过 120 kT 的能量障碍才能进入洋葱态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
期刊最新文献
Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application Rapidly synthesis of AuM (M = Pt, Pd) hexagonals/graphene quantum dots nanostructures and their application for non-enzyme hydrogen peroxide detection Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1