Fabrication of 32×32 2 D CMUT Arrays on a Borosilicate Glass Substrate With Silicon- Through-Wafer Interconnects Using Non- Aligned and Aligned Anodic Bonding

IF 2.5 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Microelectromechanical Systems Pub Date : 2024-08-22 DOI:10.1109/JMEMS.2024.3440191
Muhammetgeldi Annayev;Ali Önder Biliroğlu;Erdem Şennik;Feysel Yalçın Yamaner;Ömer Oralkan
{"title":"Fabrication of 32×32 2 D CMUT Arrays on a Borosilicate Glass Substrate With Silicon- Through-Wafer Interconnects Using Non- Aligned and Aligned Anodic Bonding","authors":"Muhammetgeldi Annayev;Ali Önder Biliroğlu;Erdem Şennik;Feysel Yalçın Yamaner;Ömer Oralkan","doi":"10.1109/JMEMS.2024.3440191","DOIUrl":null,"url":null,"abstract":"2D arrays are crucial for developing compact and efficient 3D ultrasound systems. Capacitive micromachined ultrasonic transducer (CMUT) arrays, providing convenient integration with supporting electronics, are advantageous for implementing such systems. Fabricating 2D CMUT arrays and integrated circuits (ICs) separately and then combining them in the packaging stage provides flexibility in design and integration. The integrated system can be used for beam-steering and electronic focusing in 3D space. Previously, fabrication processes were reported for implementing 2D CMUT arrays on glass substrates with copper through-glass-via (Cu-TGV) interconnects using anodic bonding and silicon through-glass-via (Si-TGV) interconnects using a sacrificial-release process. Both approaches had challenges, such as voids in Cu-vias, microcracks in laser-drilled glass, mechanical stress in CVD nitride layers, and low fill factor due to fabrication limitations. These challenges can be overcome by combining Si-TGV interconnects with an anodic bonding process. We developed a Si-TGV wafer with a backside glass layer to make it compatible with anodic bonding. We designed and fabricated \n<inline-formula> <tex-math>$32\\times 32~2$ </tex-math></inline-formula>\nD CMUT arrays with a single cell per element to increase the fill factor and to produce high pressure. We measured an output pressure as high as 4.75 MPa\n<inline-formula> <tex-math>$_{\\textbf {pp}}$ </tex-math></inline-formula>\n at 1.8 MHz by focusing the array at 8 mm (F\n<inline-formula> <tex-math>$\\#1$ </tex-math></inline-formula>\n). Four arrays, tiled next to each other in a \n<inline-formula> <tex-math>$2\\times 2$ </tex-math></inline-formula>\n grid, focusing at 15 mm produced up to 8.65 MPa\n<inline-formula> <tex-math>$_{\\textbf {pp}}$ </tex-math></inline-formula>\n pressure at 1.8 MHz. We achieved 99.9% element yield measured in a single array.[2024-0078]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"586-595"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643749/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

2D arrays are crucial for developing compact and efficient 3D ultrasound systems. Capacitive micromachined ultrasonic transducer (CMUT) arrays, providing convenient integration with supporting electronics, are advantageous for implementing such systems. Fabricating 2D CMUT arrays and integrated circuits (ICs) separately and then combining them in the packaging stage provides flexibility in design and integration. The integrated system can be used for beam-steering and electronic focusing in 3D space. Previously, fabrication processes were reported for implementing 2D CMUT arrays on glass substrates with copper through-glass-via (Cu-TGV) interconnects using anodic bonding and silicon through-glass-via (Si-TGV) interconnects using a sacrificial-release process. Both approaches had challenges, such as voids in Cu-vias, microcracks in laser-drilled glass, mechanical stress in CVD nitride layers, and low fill factor due to fabrication limitations. These challenges can be overcome by combining Si-TGV interconnects with an anodic bonding process. We developed a Si-TGV wafer with a backside glass layer to make it compatible with anodic bonding. We designed and fabricated $32\times 32~2$ D CMUT arrays with a single cell per element to increase the fill factor and to produce high pressure. We measured an output pressure as high as 4.75 MPa $_{\textbf {pp}}$ at 1.8 MHz by focusing the array at 8 mm (F $\#1$ ). Four arrays, tiled next to each other in a $2\times 2$ grid, focusing at 15 mm produced up to 8.65 MPa $_{\textbf {pp}}$ pressure at 1.8 MHz. We achieved 99.9% element yield measured in a single array.[2024-0078]
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用非对齐和对齐阳极键合技术在硼硅玻璃基底上制作 32 次 32 美元的二维 CMUT 阵列,并采用硅穿晶互连技术
二维阵列对于开发紧凑高效的三维超声系统至关重要。电容式微机械超声波换能器(CMUT)阵列可方便地与辅助电子设备集成,是实现此类系统的有利条件。分别制造二维 CMUT 阵列和集成电路 (IC),然后在封装阶段将它们组合在一起,可以灵活地进行设计和集成。集成系统可用于三维空间的光束转向和电子聚焦。以前曾报道过在玻璃基板上实现二维 CMUT 阵列的制造工艺,这些阵列采用阳极键合的铜穿透玻璃微孔(Cu-TGV)互连和牺牲释放工艺的硅穿透玻璃微孔(Si-TGV)互连。这两种方法都面临着挑战,例如铜通孔中的空隙、激光钻孔玻璃中的微裂缝、CVD 氮化物层中的机械应力以及由于制造限制而导致的低填充系数。通过将 Si-TGV 互连与阳极键合工艺相结合,可以克服这些挑战。我们开发了一种带有背面玻璃层的 Si-TGV 晶圆,使其与阳极键合工艺兼容。我们设计并制造了每元件一个单电池的 $32/times 32~2$ D CMUT 阵列,以提高填充因子并产生高压。我们通过将阵列聚焦在 8 毫米处(F $\#1$ ),在 1.8 MHz 频率下测得了高达 4.75 兆帕的输出压力 $_{\textbf{pp}}$。四个阵列以 2 美元乘 2 美元的网格相邻排列,聚焦 15 毫米,在 1.8 MHz 时产生高达 8.65 MPa $_{\textbf {pp}}$的压力。我们在单个阵列中测得的元件产量达到了 99.9%[2024-0078]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microelectromechanical Systems
Journal of Microelectromechanical Systems 工程技术-工程:电子与电气
CiteScore
6.20
自引率
7.40%
发文量
115
审稿时长
7.5 months
期刊介绍: The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.
期刊最新文献
Front Cover Table of Contents Journal of Microelectromechanical Systems Publication Information TechRxiv: Share Your Preprint Research with the World! Capacitive Micromachined Transducers With Out-of-Plane Repulsive Actuation for Enhancing Ultrasound Transmission in Air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1