{"title":"Maximizing weighted sums of binomial coefficients using generalized continued fractions","authors":"S.P. Glasby, G.R. Paseman","doi":"10.1017/prm.2024.46","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:tex-math>$m,\\,r\\in {\\mathbb {Z}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline1.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\omega \\in {\\mathbb {R}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline2.png\"/> </jats:alternatives> </jats:inline-formula> satisfy <jats:inline-formula> <jats:alternatives> <jats:tex-math>$0\\leqslant r\\leqslant m$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline3.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\omega \\geqslant 1$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline4.png\"/> </jats:alternatives> </jats:inline-formula>. Our main result is a generalized continued fraction for an expression involving the partial binomial sum <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s_m(r) = \\sum _{i=0}^r\\binom{m}{i}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline5.png\"/> </jats:alternatives> </jats:inline-formula>. We apply this to create new upper and lower bounds for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$s_m(r)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline6.png\"/> </jats:alternatives> </jats:inline-formula> and thus for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$g_{\\omega,m}(r)=\\omega ^{-r}s_m(r)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline7.png\"/> </jats:alternatives> </jats:inline-formula>. We also bound an integer <jats:inline-formula> <jats:alternatives> <jats:tex-math>$r_0 \\in \\{0,\\,1,\\,\\ldots,\\,m\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline8.png\"/> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$g_{\\omega,m}(0)<\\cdots < g_{\\omega,m}(r_0-1)\\leqslant g_{\\omega,m}(r_0)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline9.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$g_{\\omega,m}(r_0)>\\cdots >g_{\\omega,m}(m)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline10.png\"/> </jats:alternatives> </jats:inline-formula>. For real <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\omega \\geqslant \\sqrt 3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline11.png\"/> </jats:alternatives> </jats:inline-formula> we prove that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$r_0\\in \\{\\lfloor \\frac {m+2}{\\omega +1}\\rfloor,\\,\\lfloor \\frac {m+2}{\\omega +1}\\rfloor +1\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline12.png\"/> </jats:alternatives> </jats:inline-formula>, and also <jats:inline-formula> <jats:alternatives> <jats:tex-math>$r_0 =\\lfloor \\frac {m+2}{\\omega +1}\\rfloor$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline13.png\"/> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\omega \\in \\{3,\\,4,\\,\\ldots \\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline14.png\"/> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\omega =2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline15.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$3\\nmid m$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000465_inline16.png\"/> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.46","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $m,\,r\in {\mathbb {Z}}$ and $\omega \in {\mathbb {R}}$ satisfy $0\leqslant r\leqslant m$ and $\omega \geqslant 1$. Our main result is a generalized continued fraction for an expression involving the partial binomial sum $s_m(r) = \sum _{i=0}^r\binom{m}{i}$. We apply this to create new upper and lower bounds for $s_m(r)$ and thus for $g_{\omega,m}(r)=\omega ^{-r}s_m(r)$. We also bound an integer $r_0 \in \{0,\,1,\,\ldots,\,m\}$ such that $g_{\omega,m}(0)<\cdots < g_{\omega,m}(r_0-1)\leqslant g_{\omega,m}(r_0)$ and $g_{\omega,m}(r_0)>\cdots >g_{\omega,m}(m)$. For real $\omega \geqslant \sqrt 3$ we prove that $r_0\in \{\lfloor \frac {m+2}{\omega +1}\rfloor,\,\lfloor \frac {m+2}{\omega +1}\rfloor +1\}$, and also $r_0 =\lfloor \frac {m+2}{\omega +1}\rfloor$ for $\omega \in \{3,\,4,\,\ldots \}$ or $\omega =2$ and $3\nmid m$.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.