F. BufanoINAF-Osservatorio Astrofisico di Catania, Italy, C. BordiuINAF-Osservatorio Astrofisico di Catania, Italy, T. CecconelloINAF-Osservatorio Astrofisico di Catania, Italy, M. MunariINAF-Osservatorio Astrofisico di Catania, Italy, A. HopkinsSchool of Mathematical and Physical Sciences, Australia, A. IngallineraINAF-Osservatorio Astrofisico di Catania, Italy, P. LetoINAF-Osservatorio Astrofisico di Catania, Italy, S. LoruINAF-Osservatorio Astrofisico di Catania, Italy, S. RiggiINAF-Osservatorio Astrofisico di Catania, Italy, E. SciaccaINAF-Osservatorio Astrofisico di Catania, Italy, G. VizzariUniversita degli Studi di Milano-Bicocca, Italy, A. De MarcoInstitute of Space Sciences and Astronomy, Malta, C. S. BuemiINAF-Osservatorio Astrofisico di Catania, Italy, F. CavallaroINAF-Osservatorio Astrofisico di Catania, Italy, C. TrigilioINAF-Osservatorio Astrofisico di Catania, Italy, G. UmanaINAF-Osservatorio Astrofisico di Catania, Italy
{"title":"Sifting the debris: Patterns in the SNR population with unsupervised ML methods","authors":"F. BufanoINAF-Osservatorio Astrofisico di Catania, Italy, C. BordiuINAF-Osservatorio Astrofisico di Catania, Italy, T. CecconelloINAF-Osservatorio Astrofisico di Catania, Italy, M. MunariINAF-Osservatorio Astrofisico di Catania, Italy, A. HopkinsSchool of Mathematical and Physical Sciences, Australia, A. IngallineraINAF-Osservatorio Astrofisico di Catania, Italy, P. LetoINAF-Osservatorio Astrofisico di Catania, Italy, S. LoruINAF-Osservatorio Astrofisico di Catania, Italy, S. RiggiINAF-Osservatorio Astrofisico di Catania, Italy, E. SciaccaINAF-Osservatorio Astrofisico di Catania, Italy, G. VizzariUniversita degli Studi di Milano-Bicocca, Italy, A. De MarcoInstitute of Space Sciences and Astronomy, Malta, C. S. BuemiINAF-Osservatorio Astrofisico di Catania, Italy, F. CavallaroINAF-Osservatorio Astrofisico di Catania, Italy, C. TrigilioINAF-Osservatorio Astrofisico di Catania, Italy, G. UmanaINAF-Osservatorio Astrofisico di Catania, Italy","doi":"arxiv-2409.06383","DOIUrl":null,"url":null,"abstract":"Supernova remnants (SNRs) carry vast amounts of mechanical and radiative\nenergy that heavily influence the structural, dynamical, and chemical evolution\nof galaxies. To this day, more than 300 SNRs have been discovered in the Milky\nWay, exhibiting a wide variety of observational features. However, existing\nclassification schemes are mainly based on their radio morphology. In this\nwork, we introduce a novel unsupervised deep learning pipeline to analyse a\nrepresentative subsample of the Galactic SNR population ($\\sim$ 50% of the\ntotal) with the aim of finding a connection between their multi-wavelength\nfeatures and their physical properties. The pipeline involves two stages: (1) a\nrepresentation learning stage, consisting of a convolutional autoencoder that\nfeeds on imagery from infrared and radio continuum surveys (WISE 22$\\mu$m,\nHi-GAL 70 $\\mu$m and SMGPS 30 cm) and produces a compact representation in a\nlower-dimensionality latent space; and (2) a clustering stage that seeks\nmeaningful clusters in the latent space that can be linked to the physical\nproperties of the SNRs and their surroundings. Our results suggest that this\napproach, when combined with an intermediate uniform manifold approximation and\nprojection (UMAP) reprojection of the autoencoded embeddings into a more\nclusterable manifold, enables us to find reliable clusters. Despite a large\nnumber of sources being classified as outliers, most clusters relate to the\npresence of distinctive features, such as the distribution of infrared\nemission, the presence of radio shells and pulsar wind nebulae, and the\nexistence of dust filaments.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Supernova remnants (SNRs) carry vast amounts of mechanical and radiative
energy that heavily influence the structural, dynamical, and chemical evolution
of galaxies. To this day, more than 300 SNRs have been discovered in the Milky
Way, exhibiting a wide variety of observational features. However, existing
classification schemes are mainly based on their radio morphology. In this
work, we introduce a novel unsupervised deep learning pipeline to analyse a
representative subsample of the Galactic SNR population ($\sim$ 50% of the
total) with the aim of finding a connection between their multi-wavelength
features and their physical properties. The pipeline involves two stages: (1) a
representation learning stage, consisting of a convolutional autoencoder that
feeds on imagery from infrared and radio continuum surveys (WISE 22$\mu$m,
Hi-GAL 70 $\mu$m and SMGPS 30 cm) and produces a compact representation in a
lower-dimensionality latent space; and (2) a clustering stage that seeks
meaningful clusters in the latent space that can be linked to the physical
properties of the SNRs and their surroundings. Our results suggest that this
approach, when combined with an intermediate uniform manifold approximation and
projection (UMAP) reprojection of the autoencoded embeddings into a more
clusterable manifold, enables us to find reliable clusters. Despite a large
number of sources being classified as outliers, most clusters relate to the
presence of distinctive features, such as the distribution of infrared
emission, the presence of radio shells and pulsar wind nebulae, and the
existence of dust filaments.