Likelihood reconstruction of radio signals of neutrinos and cosmic rays

Martin Ravn, Christian Glaser, Thorsten Glüsenkamp, Alan Coleman
{"title":"Likelihood reconstruction of radio signals of neutrinos and cosmic rays","authors":"Martin Ravn, Christian Glaser, Thorsten Glüsenkamp, Alan Coleman","doi":"arxiv-2409.11888","DOIUrl":null,"url":null,"abstract":"Ultra-high-energy neutrinos and cosmic rays are excellent probes of\nastroparticle physics phenomena. For astroparticle physics analyses, robust and\naccurate reconstruction of signal parameters like arrival direction and energy\nis essential. Current reconstruction methods ignore bin-to-bin noise\ncorrelations, which limits reconstruction resolution and so far has prevented\ncalculations of event-by-event uncertainties. In this work, we present a\nlikelihood description of neutrino or cosmic-ray signals in a radio detector\nwith correlated noise, as present in all neutrino and cosmic-ray radio\ndetectors. We demonstrate with a toy-model reconstruction that signal\nparameters such as energy and direction, including event-by-event uncertainties\nwith correct coverage, can be obtained. Additionally, by correctly accounting\nfor correlations, the likelihood description constrains the best-fit parameters\nbetter than alternative methods and thus improves experimental reconstruction\ncapabilities.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-high-energy neutrinos and cosmic rays are excellent probes of astroparticle physics phenomena. For astroparticle physics analyses, robust and accurate reconstruction of signal parameters like arrival direction and energy is essential. Current reconstruction methods ignore bin-to-bin noise correlations, which limits reconstruction resolution and so far has prevented calculations of event-by-event uncertainties. In this work, we present a likelihood description of neutrino or cosmic-ray signals in a radio detector with correlated noise, as present in all neutrino and cosmic-ray radio detectors. We demonstrate with a toy-model reconstruction that signal parameters such as energy and direction, including event-by-event uncertainties with correct coverage, can be obtained. Additionally, by correctly accounting for correlations, the likelihood description constrains the best-fit parameters better than alternative methods and thus improves experimental reconstruction capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中微子和宇宙射线无线电信号的可能性重建
超高能中微子和宇宙射线是粒子物理现象的绝佳探测器。对于天体粒子物理分析而言,稳健而准确地重建信号参数(如到达方向和能量)至关重要。目前的重构方法忽略了分区之间的噪声相关性,从而限制了重构的分辨率,至今无法计算逐个事件的不确定性。在这项工作中,我们对所有中微子和宇宙射线无线电探测器中存在的相关噪声的无线电探测器中的中微子或宇宙射线信号进行了似然描述。我们用一个玩具模型重构证明,可以获得能量和方向等信号参数,包括具有正确覆盖范围的逐个事件不确定性。此外,通过正确考虑相关性,似然描述比其他方法更好地约束了最佳拟合参数,从而提高了实验重建能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1