Improving Early Detection of Gravitational Waves from Binary Neutron Stars Using CNNs and FPGAs

Ana Martins, Melissa Lopez, Quirijn Meijer, Gregory Baltus, Marc van der Sluys, Chris Van Den Broeck, Sarah Caudill
{"title":"Improving Early Detection of Gravitational Waves from Binary Neutron Stars Using CNNs and FPGAs","authors":"Ana Martins, Melissa Lopez, Quirijn Meijer, Gregory Baltus, Marc van der Sluys, Chris Van Den Broeck, Sarah Caudill","doi":"arxiv-2409.05068","DOIUrl":null,"url":null,"abstract":"The detection of gravitational waves (GWs) from binary neutron stars (BNSs)\nwith possible telescope follow-ups opens a window to ground-breaking\ndiscoveries in the field of multi-messenger astronomy. With the improved\nsensitivity of current and future GW detectors, more BNS detections are\nexpected in the future. Therefore, enhancing low-latency GW search algorithms\nto achieve rapid speed, high accuracy, and low computational cost is essential.\nOne innovative solution to reduce latency is the use of machine learning (ML)\nmethods embedded in field-programmable gate arrays (FPGAs). In this work, we\npresent a novel \\texttt{WaveNet}-based method, leveraging the state-of-the-art\nML model, to produce early-warning alerts for BNS systems. Using simulated GW\nsignals embedded in Gaussian noise from the Advanced LIGO and Advanced Virgo\ndetectors' third observing run (O3) as a proof-of-concept dataset, we\ndemonstrate significant performance improvements. Compared to the current\nleading ML-based early-warning system, our approach enhances detection accuracy\nfrom 66.81\\% to 76.22\\% at a 1\\% false alarm probability. Furthermore, we\nevaluate the time, energy, and economical cost of our model across CPU, GPU,\nand FPGA platforms, showcasing its potential for deployment in real-time\ngravitational wave detection pipelines.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of gravitational waves (GWs) from binary neutron stars (BNSs) with possible telescope follow-ups opens a window to ground-breaking discoveries in the field of multi-messenger astronomy. With the improved sensitivity of current and future GW detectors, more BNS detections are expected in the future. Therefore, enhancing low-latency GW search algorithms to achieve rapid speed, high accuracy, and low computational cost is essential. One innovative solution to reduce latency is the use of machine learning (ML) methods embedded in field-programmable gate arrays (FPGAs). In this work, we present a novel \texttt{WaveNet}-based method, leveraging the state-of-the-art ML model, to produce early-warning alerts for BNS systems. Using simulated GW signals embedded in Gaussian noise from the Advanced LIGO and Advanced Virgo detectors' third observing run (O3) as a proof-of-concept dataset, we demonstrate significant performance improvements. Compared to the current leading ML-based early-warning system, our approach enhances detection accuracy from 66.81\% to 76.22\% at a 1\% false alarm probability. Furthermore, we evaluate the time, energy, and economical cost of our model across CPU, GPU, and FPGA platforms, showcasing its potential for deployment in real-time gravitational wave detection pipelines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 CNN 和 FPGA 改进对双中子星引力波的早期探测
从双中子星(BNSs)探测到引力波(GWs)并可能用望远镜进行跟踪,为多信使天文学领域的突破性发现打开了一扇窗。随着目前和未来的 GW 探测器灵敏度的提高,预计未来会有更多的 BNS 被探测到。因此,加强低延迟 GW 搜索算法以实现快速、高精度和低计算成本至关重要。降低延迟的一个创新解决方案是使用嵌入到现场可编程门阵列(FPGA)中的机器学习(ML)方法。在这项工作中,我们提出了一种基于文本tt{WaveNet}的新方法,利用最先进的ML模型,为BNS系统制作预警警报。我们使用高级 LIGO 和高级 Virgodetectors 第三次观测运行(O3)中嵌入高斯噪声的模拟 GW 信号作为概念验证数据集,展示了性能的显著提高。与目前领先的基于ML的预警系统相比,我们的方法在1%的误报概率下将探测准确率从66.81%提高到76.22%。此外,我们还评估了我们的模型在CPU、GPU和FPGA平台上的时间、能量和经济成本,展示了它在实时引力波检测管道中的部署潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1