STAR NRE: Solving supernova selection effects with set-based truncated auto-regressive neural ratio estimation

Konstantin Karchev, Roberto Trotta
{"title":"STAR NRE: Solving supernova selection effects with set-based truncated auto-regressive neural ratio estimation","authors":"Konstantin Karchev, Roberto Trotta","doi":"arxiv-2409.03837","DOIUrl":null,"url":null,"abstract":"Accounting for selection effects in supernova type Ia (SN Ia) cosmology is\ncrucial for unbiased cosmological parameter inference -- even more so for the\nnext generation of large, mostly photometric-only surveys. The conventional\n\"bias correction\" procedure has a built-in systematic bias towards the fiducial\nmodel used to derive it and fails to account for the additional Eddington bias\nthat arises in the presence of significant redshift uncertainty. On the other\nhand, Bayesian hierarchical models scale poorly with the data set size and\nrequire explicit assumptions for the selection function that may be inaccurate\nor contrived. To address these limitations, we introduce STAR NRE, a\nsimulation-based approach that makes use of a conditioned deep set neural\nnetwork and combines efficient high-dimensional global inference with\nsubsampling-based truncation in order to scale to very large survey sizes while\ntraining on sets with varying cardinality. Applying it to a simplified SN Ia\nmodel consisting of standardised brightnesses and redshifts with Gaussian\nuncertainties and a selection procedure based on the expected LSST sensitivity,\nwe demonstrate precise and unbiased inference of cosmological parameters and\nthe redshift evolution of the volumetric SN Ia rate from ~100 000 mock SNae Ia.\nOur inference procedure can incorporate arbitrarily complex selection criteria,\nincluding transient classification, in the forward simulator and be applied to\ncomplex data like light curves. We outline these and other steps aimed at\nintegrating STAR NRE into an end-to-end simulation-based pipeline for the\nanalysis of future photometric-only SN Ia data.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accounting for selection effects in supernova type Ia (SN Ia) cosmology is crucial for unbiased cosmological parameter inference -- even more so for the next generation of large, mostly photometric-only surveys. The conventional "bias correction" procedure has a built-in systematic bias towards the fiducial model used to derive it and fails to account for the additional Eddington bias that arises in the presence of significant redshift uncertainty. On the other hand, Bayesian hierarchical models scale poorly with the data set size and require explicit assumptions for the selection function that may be inaccurate or contrived. To address these limitations, we introduce STAR NRE, a simulation-based approach that makes use of a conditioned deep set neural network and combines efficient high-dimensional global inference with subsampling-based truncation in order to scale to very large survey sizes while training on sets with varying cardinality. Applying it to a simplified SN Ia model consisting of standardised brightnesses and redshifts with Gaussian uncertainties and a selection procedure based on the expected LSST sensitivity, we demonstrate precise and unbiased inference of cosmological parameters and the redshift evolution of the volumetric SN Ia rate from ~100 000 mock SNae Ia. Our inference procedure can incorporate arbitrarily complex selection criteria, including transient classification, in the forward simulator and be applied to complex data like light curves. We outline these and other steps aimed at integrating STAR NRE into an end-to-end simulation-based pipeline for the analysis of future photometric-only SN Ia data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STAR NRE:利用基于集合的截断自回归神经比率估算法解决超新星选择效应问题
考虑 Ia 型超新星(SN Ia)宇宙学中的选择效应对于无偏宇宙学参数推断至关重要--对于下一代大型、主要是纯光度测量的巡天来说更是如此。传统的 "偏差校正 "程序会对用于推导的基准模型产生内在的系统性偏差,而且无法解释在存在显著红移不确定性的情况下产生的额外的爱丁顿偏差。另一方面,贝叶斯层次模型随着数据集规模的增大而缩小,并且要求对选择函数做出明确的假设,而这些假设可能是不准确的或臆造的。为了解决这些局限性,我们引入了 STAR NRE,这是一种基于模拟的方法,它利用有条件的深度集神经网络,将高效的高维全局推断与基于子抽样的截断相结合,以适应超大规模的调查,同时在具有不同心率的集上进行训练。我们将其应用于一个简化的SN I模型,该模型由标准化亮度和红移(具有高斯不确定性)以及基于预期LSST灵敏度的选择程序组成,我们展示了对宇宙学参数以及约100,000个模拟SNae Ia的体积SN Ia率红移演化的精确和无偏推断。我们概述了这些步骤和其他步骤,目的是将 STAR NRE 集成到基于模拟的端到端管道中,用于分析未来的纯测光 SN Ia 数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1