Superfluid-tight cryogenic receiver with continuous sub-Kelvin cooling for EXCLAIM

Sumit Dahal, Peter A. R. Ade, Christopher J. Anderson, Alyssa Barlis, Emily M. Barrentine, Jeffrey W. Beeman, Nicholas Bellis, Alberto D. Bolatto, Victoria Braianova, Patrick C. Breysse, Berhanu T. Bulcha, Giuseppe Cataldo, Felipe A. Colazo, Lee-Roger Chevres-Fernandez, Chullhee Cho, Danny S. Chmaytelli, Jake A. Connors, Nicholas P. Costen, Paul W. Cursey, Negar Ehsan, Thomas M. Essinger-Hileman, Jason Glenn, Joseph E. Golec, James P. Hays-Wehle, Larry A. Hess, Amir E. Jahromi, Trevian Jenkins, Mark O. Kimball, Alan J. Kogut, Samuel H. Kramer, Nicole Leung, Luke N. Lowe, Philip D. Mauskopf, Jeffrey J. McMahon, Vilem Mikula, Mona Mirzaei, Samuel H. Moseley, Jonas W. Mugge-Durum, Jacob Nellis, Omid Noroozian, Kate Okun, Trevor Oxholm, Tatsat Parekh, Ue-Li Pen, Anthony R. Pullen, Maryam Rahmani, Mathias M. Ramirez, Cody Roberson, Samelys Rodriguez, Florian Roselli, Deepak Sapkota, Konrad Shire, Gage L. Siebert, Faizah Siddique, Adrian K. Sinclair, Rachel S. Somerville, Ryan Stephenson, Thomas R. Stevenson, Eric R. Switzer, Jared Termini, Peter T. Timbie, Justin Trenkamp, Carole E. Tucker, Elijah Visbal, Carolyn G. Volpert, Joseph Watson, Eric Weeks, Edward J. Wollack, Shengqi Yang, Aaron Yung
{"title":"Superfluid-tight cryogenic receiver with continuous sub-Kelvin cooling for EXCLAIM","authors":"Sumit Dahal, Peter A. R. Ade, Christopher J. Anderson, Alyssa Barlis, Emily M. Barrentine, Jeffrey W. Beeman, Nicholas Bellis, Alberto D. Bolatto, Victoria Braianova, Patrick C. Breysse, Berhanu T. Bulcha, Giuseppe Cataldo, Felipe A. Colazo, Lee-Roger Chevres-Fernandez, Chullhee Cho, Danny S. Chmaytelli, Jake A. Connors, Nicholas P. Costen, Paul W. Cursey, Negar Ehsan, Thomas M. Essinger-Hileman, Jason Glenn, Joseph E. Golec, James P. Hays-Wehle, Larry A. Hess, Amir E. Jahromi, Trevian Jenkins, Mark O. Kimball, Alan J. Kogut, Samuel H. Kramer, Nicole Leung, Luke N. Lowe, Philip D. Mauskopf, Jeffrey J. McMahon, Vilem Mikula, Mona Mirzaei, Samuel H. Moseley, Jonas W. Mugge-Durum, Jacob Nellis, Omid Noroozian, Kate Okun, Trevor Oxholm, Tatsat Parekh, Ue-Li Pen, Anthony R. Pullen, Maryam Rahmani, Mathias M. Ramirez, Cody Roberson, Samelys Rodriguez, Florian Roselli, Deepak Sapkota, Konrad Shire, Gage L. Siebert, Faizah Siddique, Adrian K. Sinclair, Rachel S. Somerville, Ryan Stephenson, Thomas R. Stevenson, Eric R. Switzer, Jared Termini, Peter T. Timbie, Justin Trenkamp, Carole E. Tucker, Elijah Visbal, Carolyn G. Volpert, Joseph Watson, Eric Weeks, Edward J. Wollack, Shengqi Yang, Aaron Yung","doi":"arxiv-2409.02847","DOIUrl":null,"url":null,"abstract":"The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a\nballoon-borne telescope designed to survey star formation over cosmological\ntime scales using intensity mapping in the 420 - 540 GHz frequency range.\nEXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers\nfeaturing kinetic inductance detectors (KIDs) to achieve high sensitivity,\nallowing for fast integration in dark atmospheric windows. The telescope\nreceiver is cooled to $\\approx$ 1.7 K by immersion in a superfluid helium bath\nand enclosed in a superfluid-tight shell with a meta-material anti-reflection\ncoated silicon window. In addition to the optics and the spectrometer package,\nthe receiver contains the magnetic shielding, the cryogenic segment of the\nspectrometer readout, and the sub-Kelvin cooling system. A three-stage\ncontinuous adiabatic demagnetization refrigerator (CADR) keeps the detectors at\n100 mK while a $^4$He sorption cooler provides a 900 mK thermal intercept for\nmechanical suspensions and coaxial cables. We present the design of the EXCLAIM\nreceiver and report on the flight-like testing of major receiver components,\nincluding the superfluid-tight receiver window and the sub-Kelvin coolers.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation over cosmological time scales using intensity mapping in the 420 - 540 GHz frequency range. EXCLAIM uses a fully cryogenic telescope coupled to six on-chip spectrometers featuring kinetic inductance detectors (KIDs) to achieve high sensitivity, allowing for fast integration in dark atmospheric windows. The telescope receiver is cooled to $\approx$ 1.7 K by immersion in a superfluid helium bath and enclosed in a superfluid-tight shell with a meta-material anti-reflection coated silicon window. In addition to the optics and the spectrometer package, the receiver contains the magnetic shielding, the cryogenic segment of the spectrometer readout, and the sub-Kelvin cooling system. A three-stage continuous adiabatic demagnetization refrigerator (CADR) keeps the detectors at 100 mK while a $^4$He sorption cooler provides a 900 mK thermal intercept for mechanical suspensions and coaxial cables. We present the design of the EXCLAIM receiver and report on the flight-like testing of major receiver components, including the superfluid-tight receiver window and the sub-Kelvin coolers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为 EXCLAIM 提供持续亚开尔文冷却的超流体密封低温接收器
低温大孔径强度测绘实验(EXCLAIM)是一个气球式望远镜,旨在利用 420 - 540 GHz 频率范围内的强度测绘来勘测宇宙学时间尺度上的恒星形成。EXCLAIM 使用一个全低温望远镜,与六个片上光谱仪耦合,配备动感探测器(KID),以实现高灵敏度,允许在黑暗大气窗口中快速积分。望远镜接收器通过浸入超流体氦浴冷却到大约 1.7 K,并封闭在一个超流体密闭外壳中,外壳上有一个超材料抗反射涂层硅窗。除了光学元件和光谱仪组件外,接收器还包括磁屏蔽、光谱仪读数的低温部分以及亚开尔文冷却系统。一个三级连续绝热消磁制冷器(CADR)将探测器保持在 100 mK 的温度,而一个 $^4$He 吸附冷却器则为机械悬挂装置和同轴电缆提供 900 mK 的热截获。我们介绍了 EXCLAIM 接收器的设计,并报告了对主要接收器部件(包括超流体密封接收器窗口和亚开尔文冷却器)进行的飞行类测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1