Ki Yeon Kim, Seung-il Lee, Seung Hyun Lee, Seung Jae Kim, Kyoung Doug Min, Jeong Woo Lee
{"title":"Effects of Various Bore–Stroke Ratios on Hydrogen Direct Injection Spark Ignition Engines With Variable Valve Timing Under Low-Load Conditions","authors":"Ki Yeon Kim, Seung-il Lee, Seung Hyun Lee, Seung Jae Kim, Kyoung Doug Min, Jeong Woo Lee","doi":"10.1007/s12239-024-00142-3","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the effects of various bore–stroke (S/B) ratios on the combustion characteristics, energy fractions, and performance of a hydrogen direct injection spark ignition engine equipped with a variable valve timing (VVT) system under low-load conditions. The experiments were conducted at S/B ratios of 1.0, 1.2, and 1.47 while maintaining a fixed displacement volume and compression ratio. The energy budget analysis focused on heat transfer loss, combustion loss, and exhaust loss to determine their effects on gross work. The results showed that as the S/B ratio increased, heat transfer loss increased due to enhanced piston speed and in-cylinder mixing, resulting in faster combustion. Combustion loss was highest at an S/B ratio 1.0 due to longer combustion duration. In contrast, exhaust loss did not show a clear trend with varying S/B ratios. The effects of fuel injection timing and excess air ratio on engine performance and emissions were investigated. The findings of this study suggest that optimizing the S/B ratio, fuel injection timing, and excess air ratio can significantly improve the thermal efficiency and emission characteristics of hydrogen engines, providing practical insights for the design and development of future hydrogen engine technologies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00142-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of various bore–stroke (S/B) ratios on the combustion characteristics, energy fractions, and performance of a hydrogen direct injection spark ignition engine equipped with a variable valve timing (VVT) system under low-load conditions. The experiments were conducted at S/B ratios of 1.0, 1.2, and 1.47 while maintaining a fixed displacement volume and compression ratio. The energy budget analysis focused on heat transfer loss, combustion loss, and exhaust loss to determine their effects on gross work. The results showed that as the S/B ratio increased, heat transfer loss increased due to enhanced piston speed and in-cylinder mixing, resulting in faster combustion. Combustion loss was highest at an S/B ratio 1.0 due to longer combustion duration. In contrast, exhaust loss did not show a clear trend with varying S/B ratios. The effects of fuel injection timing and excess air ratio on engine performance and emissions were investigated. The findings of this study suggest that optimizing the S/B ratio, fuel injection timing, and excess air ratio can significantly improve the thermal efficiency and emission characteristics of hydrogen engines, providing practical insights for the design and development of future hydrogen engine technologies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.