Effects of Various Bore–Stroke Ratios on Hydrogen Direct Injection Spark Ignition Engines With Variable Valve Timing Under Low-Load Conditions

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-12 DOI:10.1007/s12239-024-00142-3
Ki Yeon Kim, Seung-il Lee, Seung Hyun Lee, Seung Jae Kim, Kyoung Doug Min, Jeong Woo Lee
{"title":"Effects of Various Bore–Stroke Ratios on Hydrogen Direct Injection Spark Ignition Engines With Variable Valve Timing Under Low-Load Conditions","authors":"Ki Yeon Kim, Seung-il Lee, Seung Hyun Lee, Seung Jae Kim, Kyoung Doug Min, Jeong Woo Lee","doi":"10.1007/s12239-024-00142-3","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the effects of various bore–stroke (S/B) ratios on the combustion characteristics, energy fractions, and performance of a hydrogen direct injection spark ignition engine equipped with a variable valve timing (VVT) system under low-load conditions. The experiments were conducted at S/B ratios of 1.0, 1.2, and 1.47 while maintaining a fixed displacement volume and compression ratio. The energy budget analysis focused on heat transfer loss, combustion loss, and exhaust loss to determine their effects on gross work. The results showed that as the S/B ratio increased, heat transfer loss increased due to enhanced piston speed and in-cylinder mixing, resulting in faster combustion. Combustion loss was highest at an S/B ratio 1.0 due to longer combustion duration. In contrast, exhaust loss did not show a clear trend with varying S/B ratios. The effects of fuel injection timing and excess air ratio on engine performance and emissions were investigated. The findings of this study suggest that optimizing the S/B ratio, fuel injection timing, and excess air ratio can significantly improve the thermal efficiency and emission characteristics of hydrogen engines, providing practical insights for the design and development of future hydrogen engine technologies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00142-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of various bore–stroke (S/B) ratios on the combustion characteristics, energy fractions, and performance of a hydrogen direct injection spark ignition engine equipped with a variable valve timing (VVT) system under low-load conditions. The experiments were conducted at S/B ratios of 1.0, 1.2, and 1.47 while maintaining a fixed displacement volume and compression ratio. The energy budget analysis focused on heat transfer loss, combustion loss, and exhaust loss to determine their effects on gross work. The results showed that as the S/B ratio increased, heat transfer loss increased due to enhanced piston speed and in-cylinder mixing, resulting in faster combustion. Combustion loss was highest at an S/B ratio 1.0 due to longer combustion duration. In contrast, exhaust loss did not show a clear trend with varying S/B ratios. The effects of fuel injection timing and excess air ratio on engine performance and emissions were investigated. The findings of this study suggest that optimizing the S/B ratio, fuel injection timing, and excess air ratio can significantly improve the thermal efficiency and emission characteristics of hydrogen engines, providing practical insights for the design and development of future hydrogen engine technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低负荷条件下各种缸径-冲程比对可变气门正时氢气直喷火花点火发动机的影响
本研究探讨了不同缸径-行程(S/B)比对配备可变气门正时(VVT)系统的氢气直喷火花点火发动机在低负荷条件下的燃烧特性、能量分数和性能的影响。实验是在 S/B:1.0、1.2 和 1.47 时进行的,同时保持固定的排量和压缩比。能量预算分析的重点是传热损失、燃烧损失和排气损失,以确定它们对总功的影响。结果表明,随着 S/B 比率的增加,由于活塞速度和气缸内混合的增强,导致燃烧速度加快,传热损失也随之增加。由于燃烧持续时间较长,S/B 比为 1.0 时的燃烧损失最大。相比之下,排气损失并没有随着 S/B 比的变化而呈现明显的趋势。研究还调查了燃油喷射正时和过量空气比率对发动机性能和排放的影响。研究结果表明,优化 S/B 比、燃料喷射正时和过量空气比可以显著提高氢气发动机的热效率和排放特性,为未来氢气发动机技术的设计和开发提供了实用的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1