{"title":"Exploring efficiency: an in-depth analysis of the energy, exergy, and sensitivity in four traditional liquefied natural gas processes","authors":"Maziar Changizian, Zahra Shirkhani, Yousef Tamsilian","doi":"10.1007/s10973-024-13476-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study delves into the comprehensive analysis of four conventional mixed refrigerant liquefaction processes, namely C3MR-Linde, C3MR-APCI, SMR-Linde, and SMR-APCI, emphasizing energy and exergy perspectives. According to the energy analysis, C3MR-Linde demonstrates a lower energy consumption than the other systems, at 0.271 kWh kg<sup>−1</sup> liquefied natural gas, while SMR-Air Products achieves the highest coefficient of performance (COP) at 2.67 kWh kg<sup>−1</sup>. The exergy analysis provides insights into the exergy efficiency and destruction of components, highlighting the C3MR-Linde process as the most exergy-efficient process, attaining 47.55%. Notably, compressors are identified as the primary sources of exergy destruction, accounting for 52.11%, 52.51%, and 45.39% of the overall cycle exergy destruction in the C3MR-APCI, C3MR-Linde, and SMR-APCI cycles, respectively. Furthermore, this study investigates how certain operational factors affect the COP, specific energy consumption (SEC), and exergy indices. It is observed that each cycle exhibits an optimal pressure drop in the expansion valves, with deviations resulting in a decreased COP and increased SEC. Additionally, changes in the refrigerant molar flow rates demonstrate an inverse relationship between the exergy efficiency and COP, with the SEC being notably more sensitive to such variations than the COP within the studied parameters.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 17","pages":"9477 - 9499"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10973-024-13476-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13476-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into the comprehensive analysis of four conventional mixed refrigerant liquefaction processes, namely C3MR-Linde, C3MR-APCI, SMR-Linde, and SMR-APCI, emphasizing energy and exergy perspectives. According to the energy analysis, C3MR-Linde demonstrates a lower energy consumption than the other systems, at 0.271 kWh kg−1 liquefied natural gas, while SMR-Air Products achieves the highest coefficient of performance (COP) at 2.67 kWh kg−1. The exergy analysis provides insights into the exergy efficiency and destruction of components, highlighting the C3MR-Linde process as the most exergy-efficient process, attaining 47.55%. Notably, compressors are identified as the primary sources of exergy destruction, accounting for 52.11%, 52.51%, and 45.39% of the overall cycle exergy destruction in the C3MR-APCI, C3MR-Linde, and SMR-APCI cycles, respectively. Furthermore, this study investigates how certain operational factors affect the COP, specific energy consumption (SEC), and exergy indices. It is observed that each cycle exhibits an optimal pressure drop in the expansion valves, with deviations resulting in a decreased COP and increased SEC. Additionally, changes in the refrigerant molar flow rates demonstrate an inverse relationship between the exergy efficiency and COP, with the SEC being notably more sensitive to such variations than the COP within the studied parameters.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.