W. Younsi, S. Louidi, J. J. Suñol , A. Bouaine, J. Daza
{"title":"Martensitic transformations and magnetic properties of Ni50−xMn37Sn13Fex(x = 0.5, 1, 1.5) melt-spun ribbons","authors":"W. Younsi, S. Louidi, J. J. Suñol , A. Bouaine, J. Daza","doi":"10.1007/s10973-024-13568-9","DOIUrl":null,"url":null,"abstract":"<p>The present study investigates the influence of iron (Fe) doping on the martensitic transformation and magnetic properties of Ni<sub>50−<i>x</i></sub>Mn<sub>37</sub>Sn<sub>13</sub>Fe<sub><i>x</i></sub>(<i>x</i> = 0.5, 1, 1.5) magnetic shape memory alloys in ribbon form. The ribbons were prepared using arc-melting followed by melt-spinning processes and were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, and vibrating sample magnetometry. Our findings demonstrate that the addition of Fe shifts the martensitic transformation to lower temperatures and increases the Curie point of the austenitic phase, <span>\\(T_{c}^{\\text A}\\)</span>, leading to an enhanced magnetism in the austenitic phase. Moreover, a significant increase in the magnetization jump <span>\\((\\Delta M)\\)</span> is observed, from <span>\\( 3.3\\;{\\text{emu\\ g}}^{-1} \\)</span> for <span>\\(x=1\\)</span> to <span>\\(17 \\, {\\text{emu\\ g}}^{-1} \\)</span> for <span>\\(x=1.5\\)</span> under a <span>\\(50 \\, \\text {Oe}\\)</span> applied magnetic field. The structural transformations are also found to be sensitive to the external applied magnetic field. The isothermal magnetization curves exhibit the exchange bias effect, which confirms the coexistence of antiferromagnetic and ferromagnetic coupling in the samples. Furthermore, the exchange bias effect increases with the Fe content.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"13 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10973-024-13568-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigates the influence of iron (Fe) doping on the martensitic transformation and magnetic properties of Ni50−xMn37Sn13Fex(x = 0.5, 1, 1.5) magnetic shape memory alloys in ribbon form. The ribbons were prepared using arc-melting followed by melt-spinning processes and were characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, and vibrating sample magnetometry. Our findings demonstrate that the addition of Fe shifts the martensitic transformation to lower temperatures and increases the Curie point of the austenitic phase, \(T_{c}^{\text A}\), leading to an enhanced magnetism in the austenitic phase. Moreover, a significant increase in the magnetization jump \((\Delta M)\) is observed, from \( 3.3\;{\text{emu\ g}}^{-1} \) for \(x=1\) to \(17 \, {\text{emu\ g}}^{-1} \) for \(x=1.5\) under a \(50 \, \text {Oe}\) applied magnetic field. The structural transformations are also found to be sensitive to the external applied magnetic field. The isothermal magnetization curves exhibit the exchange bias effect, which confirms the coexistence of antiferromagnetic and ferromagnetic coupling in the samples. Furthermore, the exchange bias effect increases with the Fe content.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.