Dongxu Ouyang, Yimei Pang, Jian Huang, Zhirong Wang
{"title":"What role does the safety valve play in the safety of lithium-ion cells? Part II. Cells with various states of health and formats","authors":"Dongxu Ouyang, Yimei Pang, Jian Huang, Zhirong Wang","doi":"10.1007/s10973-024-13540-7","DOIUrl":null,"url":null,"abstract":"<p>To demonstrate the role of safety valves in enhancing the safety characteristics of lithium-ion cells, this study conducts a set of abusive testing including accelerating rate calorimetry testing, overheating testing, and overcharge testing. Additionally, the influence of safety valves on cells with different states of health (100%, 90%, and 80% SOH) and formats (14,650, 18,650, and 22,650) is investigated. The results reveal that safety valves have a substantial influence on the thermal runaway behaviour of cells. They effectively mitigate the risks and hazards associated with thermal runaway during overheating and ARC conditions. Beyond that, the presence of a safety valve can prevent thermal runaway triggered by overcharge. It is observed that cells with lower SOH and/or smaller diameters are more prone to experiencing earlier thermal runaway. Furthermore, this research finds that the influence of safety valves is more pronounced in cells with less degradation and/or smaller formats.</p>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"65 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10973-024-13540-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To demonstrate the role of safety valves in enhancing the safety characteristics of lithium-ion cells, this study conducts a set of abusive testing including accelerating rate calorimetry testing, overheating testing, and overcharge testing. Additionally, the influence of safety valves on cells with different states of health (100%, 90%, and 80% SOH) and formats (14,650, 18,650, and 22,650) is investigated. The results reveal that safety valves have a substantial influence on the thermal runaway behaviour of cells. They effectively mitigate the risks and hazards associated with thermal runaway during overheating and ARC conditions. Beyond that, the presence of a safety valve can prevent thermal runaway triggered by overcharge. It is observed that cells with lower SOH and/or smaller diameters are more prone to experiencing earlier thermal runaway. Furthermore, this research finds that the influence of safety valves is more pronounced in cells with less degradation and/or smaller formats.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.