Gas-Shearing Microfluidic Fabrication of Polydiacetylene–Alginate Colorimetric Sensor Beads

Narges Ahmadi, Dong Yun Kim, Seung Soo Shin, Sneha Daradmare, Jong-Man Kim, Bum Jun Park
{"title":"Gas-Shearing Microfluidic Fabrication of Polydiacetylene–Alginate Colorimetric Sensor Beads","authors":"Narges Ahmadi, Dong Yun Kim, Seung Soo Shin, Sneha Daradmare, Jong-Man Kim, Bum Jun Park","doi":"10.1002/sstr.202400340","DOIUrl":null,"url":null,"abstract":"Polydiacetylenes (PDA) are highly regarded for their unique colorimetric and fluorescent responses, making them ideal for sensor development. Despite their potential, conventional methods for fabricating biocompatible PDA-encapsulated hydrogel sensor beads often fail to offer precise control over bead size and morphology. This study introduces a coflow gas-shearing microfluidic system that effectively overcomes these limitations, enabling the controlled production of polydiacetylene/alginate (PDA/Alg) and polydiacetylene/polydimethylsiloxane/alginate (PDA/PDMS/Alg) microbeads. Through systematic variation of gas pressure, liquid flow rates, and nozzle sizes, the mechanisms of droplet breakup and generation are explored. This process is validated through numerical modeling based on the Weber number, which enhances our understanding of droplet size distribution and flow regimes. The solvatochromic properties of PDA/Alg microbeads are assessed, highlighting their potential as polar solvent sensors and discussing the solvatochromic mechanism in terms of intermolecular interactions and the dissolution of unpolymerized monomers. Additionally, PDA/PDMS/Alg microbeads exhibit a semireversible thermochromic response under repeated cycles of heating, cooling, and UV exposure. This response is attributed to the formation of new PDA domains inside the PDMS phase upon UV exposure onto the red-phase microbeads. Overall, this study successfully demonstrates a straightforward and effective microfluidic approach for producing well-defined stimulus-responsive PDA–hydrogel microbeads.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polydiacetylenes (PDA) are highly regarded for their unique colorimetric and fluorescent responses, making them ideal for sensor development. Despite their potential, conventional methods for fabricating biocompatible PDA-encapsulated hydrogel sensor beads often fail to offer precise control over bead size and morphology. This study introduces a coflow gas-shearing microfluidic system that effectively overcomes these limitations, enabling the controlled production of polydiacetylene/alginate (PDA/Alg) and polydiacetylene/polydimethylsiloxane/alginate (PDA/PDMS/Alg) microbeads. Through systematic variation of gas pressure, liquid flow rates, and nozzle sizes, the mechanisms of droplet breakup and generation are explored. This process is validated through numerical modeling based on the Weber number, which enhances our understanding of droplet size distribution and flow regimes. The solvatochromic properties of PDA/Alg microbeads are assessed, highlighting their potential as polar solvent sensors and discussing the solvatochromic mechanism in terms of intermolecular interactions and the dissolution of unpolymerized monomers. Additionally, PDA/PDMS/Alg microbeads exhibit a semireversible thermochromic response under repeated cycles of heating, cooling, and UV exposure. This response is attributed to the formation of new PDA domains inside the PDMS phase upon UV exposure onto the red-phase microbeads. Overall, this study successfully demonstrates a straightforward and effective microfluidic approach for producing well-defined stimulus-responsive PDA–hydrogel microbeads.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用气剪微流控技术制造聚二乙炔-海藻酸盐比色传感器微珠
聚二甲苯(PDA)因其独特的比色和荧光反应而备受推崇,是开发传感器的理想材料。尽管具有潜力,但制造生物相容性 PDA 包裹水凝胶传感器珠的传统方法往往无法精确控制珠子的大小和形态。本研究介绍了一种共流气体剪切微流体系统,它能有效克服这些限制,实现聚二乙烯/精氨酸(PDA/Alg)和聚二乙烯/聚二甲基硅氧烷/精氨酸(PDA/PDMS/Alg)微珠的可控生产。通过系统地改变气体压力、液体流速和喷嘴尺寸,探索了液滴破裂和生成的机理。这一过程通过基于韦伯数的数值建模得到了验证,从而加深了我们对液滴大小分布和流动机制的理解。评估了 PDA/Alg 微珠的溶变色特性,突出了其作为极性溶剂传感器的潜力,并从分子间相互作用和未聚合单体溶解的角度讨论了溶变色机制。此外,PDA/PDMS/Alg 微珠在加热、冷却和紫外线照射的反复循环下表现出半可逆的热致变色反应。这种反应是由于红相微珠经紫外线照射后,在 PDMS 相内形成了新的 PDA 域。总之,这项研究成功地展示了一种直接有效的微流控方法,用于生产定义明确的刺激响应型 PDA 水凝胶微珠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Mesoporous Silica Nanoparticle Grafted Polypropylene Membrane toward Long-Term Efficient Oxygenation Thermal Methanol Synthesis from CO2 Using Cu/ZnO Catalysts: Insights from First-Principles Calculations Modulating Alkyl Groups in Copolymer to Control Ion Transport in Electrolyte-Gated Organic Transistors for Neuromorphic Computing Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries Clustered VCoCOx Nanosheets Anchored on MXene–Ti3C2@NF as a Superior Bifunctional Electrocatalyst for Alkaline Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1