In Situ Electrochemical Interfacial Manipulation Enabling Lithiophilic Li Metal Anode with Inorganic-Rich Solid Electrolyte Interphases for Stable Li Metal Batteries
Subin Kim, Ki-Yeop Cho, JunHwa Kwon, Kiyeon Sim, KwangSup Eom, Thomas F. Fuller
{"title":"In Situ Electrochemical Interfacial Manipulation Enabling Lithiophilic Li Metal Anode with Inorganic-Rich Solid Electrolyte Interphases for Stable Li Metal Batteries","authors":"Subin Kim, Ki-Yeop Cho, JunHwa Kwon, Kiyeon Sim, KwangSup Eom, Thomas F. Fuller","doi":"10.1002/sstr.202400254","DOIUrl":null,"url":null,"abstract":"Lithium-metal anodes (LMAs) are the ultimate choice for realizing high-energy-density batteries; however, its use is hindered by problematic Li growth in the form of dendrites. To alleviate dendritic Li growth, the preparation of LMAs with a lithiophilic current collector (CC) is effective; however, applying a lithiophilic CC to LMAs is still challenging due to the manufacturing complexity involved in the separate lithiophilic treatment and lithiation processes. Herein, a facile one-pot LMA fabrication method by utilizing thiourea (TU) as a precursor is proposed. A lithiophilic Cu<sub>2</sub>S layer is formed on Cu foam (CF) by the in situ electrochemical oxidation of TU (Cu<sub><i>x</i></sub>SCF), and the lithiation of CC is performed via subsequent Li electrodeposition (Li@Cu<sub><i>x</i></sub>SCF). The Cu<sub>2</sub>S on Cu<sub><i>x</i></sub>SCF can lead to uniform Li deposition by providing lithiophilic sites, and it is converted to form ionic-conductive Li<sub>2</sub>S-rich solid electrolyte interphase layer. Resultantly, Cu<sub><i>x</i></sub>SCF significantly enhances the cycling performance of LMAs compared to CF. Specifically, a LiFePO<sub>4</sub>/Li@Cu<sub><i>x</i></sub>SCF full-cell lithium-metal battery (LMB) with a low <i>n</i>/<i>p</i> ratio (1.6) exhibits capacity retention of 95.6% at 0.5 C (220 cycles) and can maintain 85.0% of initial capacity (425 cycles, <i>n</i>/<i>p</i> = 4) at 2.0 C. LMBs with LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub> and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub> also exhibit improved electrochemical performance.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-metal anodes (LMAs) are the ultimate choice for realizing high-energy-density batteries; however, its use is hindered by problematic Li growth in the form of dendrites. To alleviate dendritic Li growth, the preparation of LMAs with a lithiophilic current collector (CC) is effective; however, applying a lithiophilic CC to LMAs is still challenging due to the manufacturing complexity involved in the separate lithiophilic treatment and lithiation processes. Herein, a facile one-pot LMA fabrication method by utilizing thiourea (TU) as a precursor is proposed. A lithiophilic Cu2S layer is formed on Cu foam (CF) by the in situ electrochemical oxidation of TU (CuxSCF), and the lithiation of CC is performed via subsequent Li electrodeposition (Li@CuxSCF). The Cu2S on CuxSCF can lead to uniform Li deposition by providing lithiophilic sites, and it is converted to form ionic-conductive Li2S-rich solid electrolyte interphase layer. Resultantly, CuxSCF significantly enhances the cycling performance of LMAs compared to CF. Specifically, a LiFePO4/Li@CuxSCF full-cell lithium-metal battery (LMB) with a low n/p ratio (1.6) exhibits capacity retention of 95.6% at 0.5 C (220 cycles) and can maintain 85.0% of initial capacity (425 cycles, n/p = 4) at 2.0 C. LMBs with LiNi0.6Co0.2Mn0.2 and LiNi0.8Co0.1Mn0.1 also exhibit improved electrochemical performance.