Small-Molecule Polycyclic Aromatic Hydrocarbons as Exceptional Long-Cycle-Life Li-Ion Battery Anode Materials

Avi Arya, Sih-Ling Hsu, Chi-You Liu, Meng-Yuan Chang, Jeng-Kuei Chang, Elise Yu-Tzu Li, Yu-Sheng Su
{"title":"Small-Molecule Polycyclic Aromatic Hydrocarbons as Exceptional Long-Cycle-Life Li-Ion Battery Anode Materials","authors":"Avi Arya, Sih-Ling Hsu, Chi-You Liu, Meng-Yuan Chang, Jeng-Kuei Chang, Elise Yu-Tzu Li, Yu-Sheng Su","doi":"10.1002/sstr.202400273","DOIUrl":null,"url":null,"abstract":"The growing demand for cost-effective and sustainable energy-storage solutions has spurred interest in novel anode materials for lithium-ion batteries (LIBs). In this study, the potential of small-molecule polycyclic aromatic hydrocarbons (SMPAHs) as promising candidates for LIB anodes is explored. Through a comprehensive experimental approach involving electrode fabrication, material characterization, and electrochemical testing, the electrochemical performance of SMPAHs, including naphthalene, biphenyl, 9,9-dimethylfluorene, phenanthrene, <i>p</i>-terphenyl, and pyrene (Py), is thoroughly investigated. In the results, the impressive cycle stability, high specific capacity, and excellent rate capability of the SMPAH electrode are revealed. Additionally, a direct contact prelithiation strategy is implemented to enhance the initial Coulombic efficiency (ICE) of SMPAH anodes, yielding significant improvements in the ICE and cycle stability. Computational simulations provide valuable insights into the electrochemical behavior and lithium-storage mechanisms of SMPAHs, confirming their potential as effective anode materials. The simulations reveal favorable lithium adsorption sites, the predominant storage mechanisms, and the dissolution mechanism of Py through computational calculations. Overall, in this study, the promise of SMPAHs is highlighted as sustainable anode materials for LIBs, advancing energy-storage technologies toward a greener future.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for cost-effective and sustainable energy-storage solutions has spurred interest in novel anode materials for lithium-ion batteries (LIBs). In this study, the potential of small-molecule polycyclic aromatic hydrocarbons (SMPAHs) as promising candidates for LIB anodes is explored. Through a comprehensive experimental approach involving electrode fabrication, material characterization, and electrochemical testing, the electrochemical performance of SMPAHs, including naphthalene, biphenyl, 9,9-dimethylfluorene, phenanthrene, p-terphenyl, and pyrene (Py), is thoroughly investigated. In the results, the impressive cycle stability, high specific capacity, and excellent rate capability of the SMPAH electrode are revealed. Additionally, a direct contact prelithiation strategy is implemented to enhance the initial Coulombic efficiency (ICE) of SMPAH anodes, yielding significant improvements in the ICE and cycle stability. Computational simulations provide valuable insights into the electrochemical behavior and lithium-storage mechanisms of SMPAHs, confirming their potential as effective anode materials. The simulations reveal favorable lithium adsorption sites, the predominant storage mechanisms, and the dissolution mechanism of Py through computational calculations. Overall, in this study, the promise of SMPAHs is highlighted as sustainable anode materials for LIBs, advancing energy-storage technologies toward a greener future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为特殊长循环寿命锂离子电池阳极材料的小分子多环芳烃
对具有成本效益和可持续能源存储解决方案的需求日益增长,激发了人们对新型锂离子电池(LIB)负极材料的兴趣。本研究探讨了小分子多环芳烃(SMPAHs)作为锂离子电池阳极候选材料的潜力。通过涉及电极制造、材料表征和电化学测试的综合实验方法,深入研究了 SMPAHs(包括萘、联苯、9,9-二甲基芴、菲、对三联苯和芘)的电化学性能。研究结果表明,SMPAH 电极具有令人印象深刻的循环稳定性、高比容量和出色的速率能力。此外,为了提高 SMPAH 阳极的初始库仑效率 (ICE),还采用了直接接触预硫化策略,从而显著提高了 ICE 和循环稳定性。计算模拟为了解 SMPAH 的电化学行为和锂存储机制提供了宝贵的见解,证实了它们作为有效负极材料的潜力。模拟计算揭示了有利的锂吸附位点、主要的储存机制以及 Py 的溶解机制。总之,本研究强调了 SMPAHs 作为可持续锂离子电池负极材料的前景,从而推动储能技术走向更加绿色的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Mesoporous Silica Nanoparticle Grafted Polypropylene Membrane toward Long-Term Efficient Oxygenation Thermal Methanol Synthesis from CO2 Using Cu/ZnO Catalysts: Insights from First-Principles Calculations Modulating Alkyl Groups in Copolymer to Control Ion Transport in Electrolyte-Gated Organic Transistors for Neuromorphic Computing Monodispersed Iron Selenide Nanoparticles United with Carbon Nanotubes for Highly Reversible Zinc–Air Batteries Clustered VCoCOx Nanosheets Anchored on MXene–Ti3C2@NF as a Superior Bifunctional Electrocatalyst for Alkaline Water Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1