Mingyue Ye, Tingting Su, Jin Li, Xiaowan Chen, Dichen Ying, Shijia Wu, Zhouping Wang, Nuo Duan
{"title":"Multifunctional Ce-MOF@PdNPs with colorimetric fluorescent electrochemical activity for ultrasensitive and accurate detection of diethylstilbestrol","authors":"Mingyue Ye, Tingting Su, Jin Li, Xiaowan Chen, Dichen Ying, Shijia Wu, Zhouping Wang, Nuo Duan","doi":"10.1007/s12274-024-6951-4","DOIUrl":null,"url":null,"abstract":"<p>The development of biosensors is gaining tremendous attention in various fields due to their extraordinary advantages, however, their sensitivity and accuracy are still challenging. Herein, we proposed a novel multifunctional nanocomposite Ce-MOF@PdNPs (MOF = metal-organic framework, PdNPs = Pd nanoparticles)-mediated triple-readout aptasensor for accurate and reliable detection of diethylstilbestrol (DES), in which Ce-MOF@PdNPs exhibited excellent peroxidase (POD)-like activity, fluormetric, and electro conductive properties. In addition, enzymes-assisted target recycling amplification was utilized to improve the sensitivity, that is the specific binding of aptamer and DES triggered an Exo III enzyme-assisted recycling reaction. The generated F-DNA was captured by the H3 strand linked to Ce-MOF@PdNPs immobilized on the electrode, exposing cleavage sites and activating the Nt.BbvCI enzyme-assisted recycling reaction, leading to the dissociation of Ce-MOF@PdNPs and a significant reduced electrochemical signal. The collected Ce-MOF@PdNPs solution also induced a proportional change in the color and fluorescence, achieving a colorimetric and fluormetric detection functionality. The detection limit under colorimetric mode was 0.16 and 0.76 ng/mL under fluorescence mode, and 0.87 pg/mL under electrochemical mode. This triple-readout aptasensor exhibits high sensitivity, selectivity and accuracy, providing a new idea for designing novel biosensing platforms for veterinary drug residue detection.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"6 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6951-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of biosensors is gaining tremendous attention in various fields due to their extraordinary advantages, however, their sensitivity and accuracy are still challenging. Herein, we proposed a novel multifunctional nanocomposite Ce-MOF@PdNPs (MOF = metal-organic framework, PdNPs = Pd nanoparticles)-mediated triple-readout aptasensor for accurate and reliable detection of diethylstilbestrol (DES), in which Ce-MOF@PdNPs exhibited excellent peroxidase (POD)-like activity, fluormetric, and electro conductive properties. In addition, enzymes-assisted target recycling amplification was utilized to improve the sensitivity, that is the specific binding of aptamer and DES triggered an Exo III enzyme-assisted recycling reaction. The generated F-DNA was captured by the H3 strand linked to Ce-MOF@PdNPs immobilized on the electrode, exposing cleavage sites and activating the Nt.BbvCI enzyme-assisted recycling reaction, leading to the dissociation of Ce-MOF@PdNPs and a significant reduced electrochemical signal. The collected Ce-MOF@PdNPs solution also induced a proportional change in the color and fluorescence, achieving a colorimetric and fluormetric detection functionality. The detection limit under colorimetric mode was 0.16 and 0.76 ng/mL under fluorescence mode, and 0.87 pg/mL under electrochemical mode. This triple-readout aptasensor exhibits high sensitivity, selectivity and accuracy, providing a new idea for designing novel biosensing platforms for veterinary drug residue detection.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.