High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-09-27 DOI:10.1007/s12274-024-6985-7
Huaqiang Fu, Renqiang Fang, Chao Tian, Wei Qian, Shiya Cao, Ziran Zhang, Xiaoxi Xu, Chuang Yao, Zhe Wang, Daping He
{"title":"High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams","authors":"Huaqiang Fu,&nbsp;Renqiang Fang,&nbsp;Chao Tian,&nbsp;Wei Qian,&nbsp;Shiya Cao,&nbsp;Ziran Zhang,&nbsp;Xiaoxi Xu,&nbsp;Chuang Yao,&nbsp;Zhe Wang,&nbsp;Daping He","doi":"10.1007/s12274-024-6985-7","DOIUrl":null,"url":null,"abstract":"<div><p>High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (<i>k</i><sub>⊥</sub>), but their excessively high content or intrinsic rigidness deteriorate TIMs softness, leading to worsening for thermal contact resistance (<i>R</i><sub>contact</sub>). In this study, 2D graphene materials are fabricated into lightweight and soft graphene foams (GFs) with high-orientation, acting as vertical filler frameworks to optimize the <i>k</i><sub>⊥</sub> and <i>R</i><sub>contact</sub> for vertical GF (VGF) TIMs. The VGF-TIM has a high <i>k</i><sub>⊥</sub> of 47.9 W·m<sup>−1</sup>·K<sup>−1</sup> at a low graphene content of 15.5 wt.%. Due to the softness and low filler contents of GFs, the VGF-TIM exhibits a low compressive module (4.2 MPa), demonstrating excellent compressibility. The resulting TIM exhibit a low contact resistance of 24.4 K·mm<sup>2</sup>·W<sup>−1</sup>, demonstrating 185.1% higher cooling efficiency in practical heat dissipating scenario compared to commercial advanced TIMs. This work provides guidelines for the design of advanced TIMs and their applications in thermal management.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":null,"pages":null},"PeriodicalIF":9.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6985-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance thermal interface materials (TIMs) are highly sought after for modern electronics. Two-dimensional (2D) materials as vertical aligned fillers can optimize the out-plane thermal conductivity (k), but their excessively high content or intrinsic rigidness deteriorate TIMs softness, leading to worsening for thermal contact resistance (Rcontact). In this study, 2D graphene materials are fabricated into lightweight and soft graphene foams (GFs) with high-orientation, acting as vertical filler frameworks to optimize the k and Rcontact for vertical GF (VGF) TIMs. The VGF-TIM has a high k of 47.9 W·m−1·K−1 at a low graphene content of 15.5 wt.%. Due to the softness and low filler contents of GFs, the VGF-TIM exhibits a low compressive module (4.2 MPa), demonstrating excellent compressibility. The resulting TIM exhibit a low contact resistance of 24.4 K·mm2·W−1, demonstrating 185.1% higher cooling efficiency in practical heat dissipating scenario compared to commercial advanced TIMs. This work provides guidelines for the design of advanced TIMs and their applications in thermal management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过垂直排列轻质软石墨烯泡沫实现高性能热界面材料
高性能热界面材料(TIMs)是现代电子产品所孜孜以求的。二维(2D)材料作为垂直排列的填充物可以优化平面外热导率(k⊥),但其含量过高或固有的刚性会降低热界面材料的柔软性,导致热接触电阻(Rcontact)恶化。在本研究中,二维石墨烯材料被制成轻质柔软的高取向石墨烯泡沫 (GF),作为垂直填充框架,以优化垂直 GF (VGF) TIM 的 k⊥ 和 Rcontact。在石墨烯含量较低的 15.5 wt.% 条件下,VGF-TIM 的 k⊥ 高达 47.9 W-m-1-K-1。由于石墨烯的柔软性和较低的填料含量,VGF-TIM 显示出较低的压缩模量(4.2 兆帕),表现出优异的可压缩性。由此产生的 TIM 具有 24.4 K-mm2-W-1 的低接触电阻,与商用先进 TIM 相比,在实际散热情况下冷却效率提高了 185.1%。这项研究为先进 TIM 的设计及其在热管理中的应用提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1