Food-derived exosomes as the future of drug delivery

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-09-05 DOI:10.1007/s12274-024-6961-2
Bin Yang, Miao Zhang, Lixia Yue, Ning Zhang, Hai Wei, Hongyu Zhang, Bing Wang, Peifeng Liu
{"title":"Food-derived exosomes as the future of drug delivery","authors":"Bin Yang, Miao Zhang, Lixia Yue, Ning Zhang, Hai Wei, Hongyu Zhang, Bing Wang, Peifeng Liu","doi":"10.1007/s12274-024-6961-2","DOIUrl":null,"url":null,"abstract":"<p>Exosomes are a kind of nanoscale membrane vesicles that can be secreted by many types of cells in both normal and pathological states and play a very important role in intercellular information exchange and transmission by transporting proteins, nucleic acids, lipids, and other biologically active substances to act on the receptor cells. Recent studies have shown that exosomes from some plants, animals, microorganisms, and other food sources can also be extracted like the structure of exosomes secreted by mammalian cells, which are named food-derived exosomes (FDEs) and can be absorbed by intestinal cells and further transported to other organs through blood circulation. With the advantages of high biocompatibility, low immunogenicity, low toxicity, high cargo capacity, and the ability to cross biological barriers, FDEs can be involved in a variety of applications such as immune response, cell migration, and tumor invasion, and have attracted a lot of attention as biotherapeutic agents and drug delivery carriers in the treatment of human diseases. This article reviews the classification, preparation characterization, physiological processes in the human body, biological functions, and application prospects of FDEs. It aims to provide a reference for the research and application of FDEs in disease treatment.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"55 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6961-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Exosomes are a kind of nanoscale membrane vesicles that can be secreted by many types of cells in both normal and pathological states and play a very important role in intercellular information exchange and transmission by transporting proteins, nucleic acids, lipids, and other biologically active substances to act on the receptor cells. Recent studies have shown that exosomes from some plants, animals, microorganisms, and other food sources can also be extracted like the structure of exosomes secreted by mammalian cells, which are named food-derived exosomes (FDEs) and can be absorbed by intestinal cells and further transported to other organs through blood circulation. With the advantages of high biocompatibility, low immunogenicity, low toxicity, high cargo capacity, and the ability to cross biological barriers, FDEs can be involved in a variety of applications such as immune response, cell migration, and tumor invasion, and have attracted a lot of attention as biotherapeutic agents and drug delivery carriers in the treatment of human diseases. This article reviews the classification, preparation characterization, physiological processes in the human body, biological functions, and application prospects of FDEs. It aims to provide a reference for the research and application of FDEs in disease treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
源自食物的外泌体是药物输送的未来
外泌体是一种纳米级膜囊泡,可由多种细胞在正常和病理状态下分泌,通过运输蛋白质、核酸、脂质和其他生物活性物质作用于受体细胞,在细胞间信息交流和传递中发挥着非常重要的作用。最近的研究表明,从一些植物、动物、微生物和其他食物来源中也可以提取与哺乳动物细胞分泌的外泌体结构相似的外泌体,这些外泌体被命名为食物来源外泌体(FDEs),可以被肠道细胞吸收,并通过血液循环进一步运送到其他器官。外泌体具有高生物相容性、低免疫原性、低毒性、高载货能力、可穿越生物屏障等优点,可参与免疫反应、细胞迁移、肿瘤侵袭等多种应用,作为生物治疗剂和药物递送载体在人类疾病治疗中备受关注。本文综述了FDEs的分类、制备特征、在人体内的生理过程、生物功能和应用前景。旨在为研究和应用反式脂肪酸治疗疾病提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1