Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Research Pub Date : 2024-09-03 DOI:10.1007/s12274-024-6939-0
Zirui Jia, Lifu Sun, Zhenguo Gao, Di Lan
{"title":"Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption","authors":"Zirui Jia, Lifu Sun, Zhenguo Gao, Di Lan","doi":"10.1007/s12274-024-6939-0","DOIUrl":null,"url":null,"abstract":"<p>Modern communication systems call for high performance electromagnetic wave absorption materials capable of mitigating microwaves over a wide frequency band. The synergistic effect of structure and component regulation on the electromagnetic wave absorption capacity of materials is considered. In this paper, a new type of three-dimensional porous carbon matrix composite is reported utilizing a reasonable design of surface impedance matching. Specifically, a thin layer of densely arranged Fe-Cr oxide particles is deposited on the surface of porous carbon via thermal reduction to prepare the Fe-Cr-O@PC composites. The effect of Cr doping on the electromagnetic wave absorption performance of the composites and the underlying attenuation mechanism have been uncovered. Consequently, outstanding electromagnetic wave absorption performance has been achieved in the composite, primarily contributed by the enhanced dielectric loss upon Cr doping. Accordingly, an effective absorption bandwidth of 4.08 GHz is achieved at a thickness of 1.4 mm, with a minimum reflection loss value of −52.71 dB. This work not only provides inspiration for the development of novel absorbers with superior performance but also holds significant potential for further advancement and practical application.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"6 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6939-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Modern communication systems call for high performance electromagnetic wave absorption materials capable of mitigating microwaves over a wide frequency band. The synergistic effect of structure and component regulation on the electromagnetic wave absorption capacity of materials is considered. In this paper, a new type of three-dimensional porous carbon matrix composite is reported utilizing a reasonable design of surface impedance matching. Specifically, a thin layer of densely arranged Fe-Cr oxide particles is deposited on the surface of porous carbon via thermal reduction to prepare the Fe-Cr-O@PC composites. The effect of Cr doping on the electromagnetic wave absorption performance of the composites and the underlying attenuation mechanism have been uncovered. Consequently, outstanding electromagnetic wave absorption performance has been achieved in the composite, primarily contributed by the enhanced dielectric loss upon Cr doping. Accordingly, an effective absorption bandwidth of 4.08 GHz is achieved at a thickness of 1.4 mm, with a minimum reflection loss value of −52.71 dB. This work not only provides inspiration for the development of novel absorbers with superior performance but also holds significant potential for further advancement and practical application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节多孔碳异质结构上的磁性界面层以实现高效微波吸收
现代通信系统要求高性能的电磁波吸收材料能够在很宽的频段内减缓微波。本文考虑了结构和成分调节对材料电磁波吸收能力的协同作用。本文利用合理的表面阻抗匹配设计,报道了一种新型三维多孔碳基复合材料。具体来说,通过热还原法在多孔碳表面沉积一薄层致密排列的铁铬氧化物颗粒,制备出铁铬-O@PC 复合材料。研究揭示了铬掺杂对复合材料电磁波吸收性能的影响及其衰减机理。结果表明,复合材料具有出色的电磁波吸收性能,这主要归功于掺杂铬后介电损耗的增强。因此,在厚度为 1.4 毫米的情况下,有效吸收带宽达到了 4.08 GHz,最小反射损耗值为 -52.71 dB。这项研究不仅为开发具有卓越性能的新型吸波材料提供了灵感,而且为进一步的研究和实际应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
期刊最新文献
High-performance thermal interface materials enabled by vertical alignment of lightweight and soft graphene foams Precise synthesis of dual atom sites for electrocatalysis Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films Rational design and structural regulation of near-infrared silver chalcogenide quantum dots Exploring the potential of simple automation concepts for quantifying functional groups on nanomaterials with optical assays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1