Simulation modeling for energy systems analysis: a critical review

Q2 Energy Energy Informatics Pub Date : 2024-08-27 DOI:10.1186/s42162-024-00374-8
M. M. Mundu, S. N. Nnamchi, J. I. Sempewo, Daniel Ejim Uti
{"title":"Simulation modeling for energy systems analysis: a critical review","authors":"M. M. Mundu,&nbsp;S. N. Nnamchi,&nbsp;J. I. Sempewo,&nbsp;Daniel Ejim Uti","doi":"10.1186/s42162-024-00374-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Energy system simulation modeling plays an important role in understanding, analyzing, optimizing, and guiding the change to sustainable energy systems.</p><h3>Objectives</h3><p>This review aims to examine energy system simulation modeling, emphasizing its role in analyzing and optimizing energy systems for sustainable development.</p><h3>Methods</h3><p>The paper explores four key simulation methodologies; Agent-Based Modeling (ABM), System Dynamics (SD), Discrete-Event Simulation (DES), and Integrated Energy Models (IEMs). Practical applications of these methodologies are illustrated through specific case studies.</p><h3>Results</h3><p>The analysis covers key components of energy systems, including generation, transmission, distribution, consumption, storage, and renewable integration. ABM models consumer behavior in renewable energy adoption, SD assesses long-term policy impacts, DES optimizes energy scheduling, and IEMs provide comprehensive sector integration. Case studies demonstrate the practical relevance and effectiveness of these models in addressing challenges such as data quality, model complexity, and validation processes.</p><h3>Conclusions</h3><p>Simulation modeling is essential for addressing energy challenges, driving innovation, and informing policy. The review identifies critical areas for improvement, including enhancing data quality, refining modeling techniques, and strengthening validation processes. Future directions emphasize the continued importance of simulation modeling in achieving sustainable energy systems.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00374-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00374-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Energy system simulation modeling plays an important role in understanding, analyzing, optimizing, and guiding the change to sustainable energy systems.

Objectives

This review aims to examine energy system simulation modeling, emphasizing its role in analyzing and optimizing energy systems for sustainable development.

Methods

The paper explores four key simulation methodologies; Agent-Based Modeling (ABM), System Dynamics (SD), Discrete-Event Simulation (DES), and Integrated Energy Models (IEMs). Practical applications of these methodologies are illustrated through specific case studies.

Results

The analysis covers key components of energy systems, including generation, transmission, distribution, consumption, storage, and renewable integration. ABM models consumer behavior in renewable energy adoption, SD assesses long-term policy impacts, DES optimizes energy scheduling, and IEMs provide comprehensive sector integration. Case studies demonstrate the practical relevance and effectiveness of these models in addressing challenges such as data quality, model complexity, and validation processes.

Conclusions

Simulation modeling is essential for addressing energy challenges, driving innovation, and informing policy. The review identifies critical areas for improvement, including enhancing data quality, refining modeling techniques, and strengthening validation processes. Future directions emphasize the continued importance of simulation modeling in achieving sustainable energy systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于能源系统分析的仿真建模:重要综述
能源系统仿真建模在理解、分析、优化和指导可持续能源系统变革方面发挥着重要作用。本综述旨在研究能源系统仿真建模,强调其在分析和优化能源系统以促进可持续发展方面的作用。本文探讨了四种关键的仿真方法:基于代理的建模(ABM)、系统动力学(SD)、离散事件仿真(DES)和综合能源模型(IEM)。通过具体案例研究说明了这些方法的实际应用。分析涵盖能源系统的关键组成部分,包括发电、输电、配电、消费、存储和可再生能源整合。ABM 模拟消费者采用可再生能源的行为,SD 评估长期政策影响,DES 优化能源调度,IEM 提供全面的行业整合。案例研究证明了这些模型在应对数据质量、模型复杂性和验证过程等挑战方面的实用性和有效性。仿真建模对于应对能源挑战、推动创新和提供政策信息至关重要。回顾指出了需要改进的关键领域,包括提高数据质量、完善建模技术和加强验证过程。未来发展方向强调了仿真建模在实现可持续能源系统方面的持续重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Analysis of user behavior and energy-saving potential of electric water heaters Construction of a digital twin model for incremental aggregation of multi type load information in hybrid microgrids under integrity constraints Multi-objective optimal configuration of CCHP system containing hybrid electric-hydrogen energy storage system Prediction of building HVAC energy consumption based on least squares support vector machines Backup subscription scheme for differential protection using IEC61850-9-2 sampled values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1