Simon Schick, Tobias Müller, Ralf Takors, Georg A. Sprenger
{"title":"Stability of a Mutualistic Escherichia coli Co-Culture During Violacein Production Depends on the Kind of Carbon Source","authors":"Simon Schick, Tobias Müller, Ralf Takors, Georg A. Sprenger","doi":"10.1002/elsc.202400025","DOIUrl":null,"url":null,"abstract":"<p>The L-tryptophan–derived purple pigment violacein (VIO) is produced in recombinant bacteria and studied for its versatile applications. Microbial synthetic co-cultures are gaining more importance as efficient factories for synthesizing high-value compounds. In this work, a mutualistic and cross-feeding <i>Escherichia coli</i> co-culture is metabolically engineered to produce VIO. The strains are genetically modified by auxotrophies in the tryptophan (TRP) pathway to enable a metabolic division of labor. Therein, one strain produces anthranilate (ANT) and the other transforms it into TRP and further to VIO. Population dynamics and stability depend on the choice of carbon source, impacting the presence and thus exchange of metabolites as well as overall VIO productivity. Four carbon sources (D-glucose, glycerol, D-galactose, and D-xylose) were compared. D-Xylose led to co-cultures which showed stable growth and VIO production, ANT-TRP exchange, and enhanced VIO production. Best titers were ∼126 mg L<sup>–1</sup> in shake flasks. The study demonstrates the importance and advantages of a mutualistic approach in VIO synthesis and highlights the carbon source's role in co-culture stability and productivity. Transferring this knowledge into an up-scaled bioreactor system has great potential in improving the overall VIO production.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202400025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202400025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The L-tryptophan–derived purple pigment violacein (VIO) is produced in recombinant bacteria and studied for its versatile applications. Microbial synthetic co-cultures are gaining more importance as efficient factories for synthesizing high-value compounds. In this work, a mutualistic and cross-feeding Escherichia coli co-culture is metabolically engineered to produce VIO. The strains are genetically modified by auxotrophies in the tryptophan (TRP) pathway to enable a metabolic division of labor. Therein, one strain produces anthranilate (ANT) and the other transforms it into TRP and further to VIO. Population dynamics and stability depend on the choice of carbon source, impacting the presence and thus exchange of metabolites as well as overall VIO productivity. Four carbon sources (D-glucose, glycerol, D-galactose, and D-xylose) were compared. D-Xylose led to co-cultures which showed stable growth and VIO production, ANT-TRP exchange, and enhanced VIO production. Best titers were ∼126 mg L–1 in shake flasks. The study demonstrates the importance and advantages of a mutualistic approach in VIO synthesis and highlights the carbon source's role in co-culture stability and productivity. Transferring this knowledge into an up-scaled bioreactor system has great potential in improving the overall VIO production.
期刊介绍:
Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.