Lightweight carbon fiber aerogel@hollow carbon/Co3O4 microsphere for broadband electromagnetic wave absorption in X and Ku bands

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-09-13 DOI:10.1016/j.carbon.2024.119617
{"title":"Lightweight carbon fiber aerogel@hollow carbon/Co3O4 microsphere for broadband electromagnetic wave absorption in X and Ku bands","authors":"","doi":"10.1016/j.carbon.2024.119617","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing proliferation of modern communications, radar systems, and military equipment operating in the X and Ku bands (8–18 GHz) has exacerbated the issue of electromagnetic wave (EMW) pollution, highlighting the urgent need for lightweight, broadband EMW-absorbing materials. In this paper, the lightweight carbon fiber aerogel@hollow carbon/Co<sub>3</sub>O<sub>4</sub> microsphere (CFA@H–C/Co<sub>3</sub>O<sub>4</sub>) were composed by ZIF-67 derived hollow carbon/Co<sub>3</sub>O<sub>4</sub> microsphere and bamboo cellulose fiber derived carbon fiber aerogels and constructed by in-situ chemical deposition, dopamine treatment and pyrolysis. Carbon fiber aerogels form a lightweight three-dimensional (3D) interconnected conductive network, which expands the multiple reflection and absorption paths of EMW and increases the dielectric loss. The hollow carbon/Co<sub>3</sub>O<sub>4</sub> microsphere inhibits the collapse of the structure by forming a polydopamine shell through the self-polymerization effect of dopamine on the surface of ZIF-67 during pyrolysis, showing dipole polarization loss, interface polarization loss and magnetic loss, which plays an important role in improving EMW polarization loss and optimizing impedance matching. The minimum reflection loss (RL<sub>min</sub>) of CFA@H–C/Co<sub>3</sub>O<sub>4</sub> reaches −43.5 dB at frequency of 12.88 GHz with thickness of 3.0 mm and the effective absorption bandwidth (EAB) of CFA@H–C/Co<sub>3</sub>O<sub>4</sub> reaches 7.84 GHz (10.08–17.92 GHz) with thickness of 3.0 mm, covering most of X and Ku bands at a low filling ratio of 15 wt%. The radar cross-section (RCS) value of CFA@H–C/Co<sub>3</sub>O<sub>4</sub> is 22.68 dB m<sup>2</sup> lower than the perfect electrical conductor (PEC). This study provides valuable insights into materials that can improve the absorption bandwidth of electromagnetic waves in the X and KU bands.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324008364","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing proliferation of modern communications, radar systems, and military equipment operating in the X and Ku bands (8–18 GHz) has exacerbated the issue of electromagnetic wave (EMW) pollution, highlighting the urgent need for lightweight, broadband EMW-absorbing materials. In this paper, the lightweight carbon fiber aerogel@hollow carbon/Co3O4 microsphere (CFA@H–C/Co3O4) were composed by ZIF-67 derived hollow carbon/Co3O4 microsphere and bamboo cellulose fiber derived carbon fiber aerogels and constructed by in-situ chemical deposition, dopamine treatment and pyrolysis. Carbon fiber aerogels form a lightweight three-dimensional (3D) interconnected conductive network, which expands the multiple reflection and absorption paths of EMW and increases the dielectric loss. The hollow carbon/Co3O4 microsphere inhibits the collapse of the structure by forming a polydopamine shell through the self-polymerization effect of dopamine on the surface of ZIF-67 during pyrolysis, showing dipole polarization loss, interface polarization loss and magnetic loss, which plays an important role in improving EMW polarization loss and optimizing impedance matching. The minimum reflection loss (RLmin) of CFA@H–C/Co3O4 reaches −43.5 dB at frequency of 12.88 GHz with thickness of 3.0 mm and the effective absorption bandwidth (EAB) of CFA@H–C/Co3O4 reaches 7.84 GHz (10.08–17.92 GHz) with thickness of 3.0 mm, covering most of X and Ku bands at a low filling ratio of 15 wt%. The radar cross-section (RCS) value of CFA@H–C/Co3O4 is 22.68 dB m2 lower than the perfect electrical conductor (PEC). This study provides valuable insights into materials that can improve the absorption bandwidth of electromagnetic waves in the X and KU bands.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 X 和 Ku 波段宽带电磁波吸收的轻质碳纤维气凝胶@空心碳/Co3O4 微球
工作在 X 和 Ku 波段(8-18 GHz)的现代通信、雷达系统和军事装备日益增多,加剧了电磁波(EMW)污染问题,凸显了对轻质、宽带电磁波吸收材料的迫切需求。本文以 ZIF-67 衍生的中空碳/Co3O4 微球和竹纤维素纤维衍生的碳纤维气凝胶为原料,通过原位化学沉积、多巴胺处理和热解等方法制备了轻质碳纤维气凝胶@中空碳/Co3O4 微球(CFA@H-C/Co3O4)。碳纤维气凝胶形成了轻质的三维(3D)互连导电网络,扩大了电磁波的多重反射和吸收路径,增加了介质损耗。空心碳/Co3O4 微球在热解过程中通过多巴胺在 ZIF-67 表面的自聚合效应形成多巴胺壳,从而抑制了结构的塌陷,表现出偶极极化损耗、界面极化损耗和磁损耗,在改善电磁波极化损耗和优化阻抗匹配方面发挥了重要作用。厚度为 3.0 mm 时,CFA@H-C/Co3O4 在 12.88 GHz 频率下的最小反射损耗(RLmin)达到 -43.5 dB;厚度为 3.0 mm 时,CFA@H-C/Co3O4 的有效吸收带宽(EAB)达到 7.84 GHz(10.08∼17.92 GHz),在 15 wt%的低填充率下覆盖了 X 和 Ku 波段的大部分。CFA@H-C/Co3O4 的雷达截面(RCS)值比完美电导体(PEC)低 22.68 dB m2。这项研究为研究可改善 X 和 KU 波段电磁波吸收带宽的材料提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Quantifying heterogeneous interface effect of Fe3O4(111)/C for enhanced low-frequency electromagnetic wave absorption Mechanically induced surface defect engineering in expanded graphite to boost the low-voltage intercalation kinetics for advanced potassium-ion batteries Revealing dynamic sulfidation of WC-WO3 heterogeneous nanoparticles: In situ formation of WS2 facilitates sulfur redox in Li–S battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1