Tracking the pre-clinical progression of transthyretin amyloid cardiomyopathy using artificial intelligence-enabled electrocardiography and echocardiography

Evangelos K Oikonomou, Veer Sangha, Sumukh Vasisht Shankar, Andreas Coppi, Harlan Krumholz, Khurram Nasir, Edward J Miller, Cesia Gallegos-Kattan, Sadeer G. Al-Kindi, Rohan Khera
{"title":"Tracking the pre-clinical progression of transthyretin amyloid cardiomyopathy using artificial intelligence-enabled electrocardiography and echocardiography","authors":"Evangelos K Oikonomou, Veer Sangha, Sumukh Vasisht Shankar, Andreas Coppi, Harlan Krumholz, Khurram Nasir, Edward J Miller, Cesia Gallegos-Kattan, Sadeer G. Al-Kindi, Rohan Khera","doi":"10.1101/2024.08.25.24312556","DOIUrl":null,"url":null,"abstract":"Background and Aims: Diagnosing transthyretin amyloid cardiomyopathy (ATTR-CM) requires advanced imaging, precluding large-scale testing for pre-clinical disease. We examined the application of artificial intelligence (AI) to echocardiography (TTE) and electrocardiography (ECG) as a scalable strategy to quantify pre-clinical trends in ATTR-CM. Methods: Across age/sex-matched case-control datasets in the Yale-New Haven Health System (YNHHS) we trained deep learning models to identify ATTR-CM-specific signatures on TTE videos and ECG images (area under the curve of 0.93 and 0.91, respectively). We deployed these across all studies of individuals referred for cardiac nuclear amyloid imaging in an independent population at YNHHS and an external population from the Houston Methodist Hospitals (HMH) to define longitudinal trends in AI-defined probabilities for ATTR-CM using age/sex-adjusted linear mixed models, and describe discrimination metrics during the early pre-clinical stage. Results: Among 984 participants referred for cardiac nuclear amyloid imaging at YNHHS (median age 74 years, 44.3% female) and 806 at HMH (69 years, 34.5% female), 112 (11.4%) and 174 (21.6%) tested positive for ATTR-CM, respectively. Across both cohorts and modalities, AI-defined ATTR-CM probabilities derived from 7,423 TTEs and 32,205 ECGs showed significantly faster progression rates in the years before clinical diagnosis in cases versus controls (p for time x group interaction ≤0.004). In the one-to-three-year window before cardiac nuclear amyloid imaging sensitivity/specificity metrics were estimated at 86.2%/44.2% [YNHHS] vs 65.7%/65.5% [HMH] for AI-Echo, and 89.8%/40.6% [YNHHS] vs 88.5%/35.1% [HMH] for AI-ECG. Conclusions: We demonstrate that AI tools for echocardiographic videos and ECG images can enable scalable identification of pre-clinical ATTR-CM, flagging individuals who may benefit from risk-modifying therapies.","PeriodicalId":501297,"journal":{"name":"medRxiv - Cardiovascular Medicine","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Cardiovascular Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.25.24312556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Aims: Diagnosing transthyretin amyloid cardiomyopathy (ATTR-CM) requires advanced imaging, precluding large-scale testing for pre-clinical disease. We examined the application of artificial intelligence (AI) to echocardiography (TTE) and electrocardiography (ECG) as a scalable strategy to quantify pre-clinical trends in ATTR-CM. Methods: Across age/sex-matched case-control datasets in the Yale-New Haven Health System (YNHHS) we trained deep learning models to identify ATTR-CM-specific signatures on TTE videos and ECG images (area under the curve of 0.93 and 0.91, respectively). We deployed these across all studies of individuals referred for cardiac nuclear amyloid imaging in an independent population at YNHHS and an external population from the Houston Methodist Hospitals (HMH) to define longitudinal trends in AI-defined probabilities for ATTR-CM using age/sex-adjusted linear mixed models, and describe discrimination metrics during the early pre-clinical stage. Results: Among 984 participants referred for cardiac nuclear amyloid imaging at YNHHS (median age 74 years, 44.3% female) and 806 at HMH (69 years, 34.5% female), 112 (11.4%) and 174 (21.6%) tested positive for ATTR-CM, respectively. Across both cohorts and modalities, AI-defined ATTR-CM probabilities derived from 7,423 TTEs and 32,205 ECGs showed significantly faster progression rates in the years before clinical diagnosis in cases versus controls (p for time x group interaction ≤0.004). In the one-to-three-year window before cardiac nuclear amyloid imaging sensitivity/specificity metrics were estimated at 86.2%/44.2% [YNHHS] vs 65.7%/65.5% [HMH] for AI-Echo, and 89.8%/40.6% [YNHHS] vs 88.5%/35.1% [HMH] for AI-ECG. Conclusions: We demonstrate that AI tools for echocardiographic videos and ECG images can enable scalable identification of pre-clinical ATTR-CM, flagging individuals who may benefit from risk-modifying therapies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能心电图和超声心动图追踪转甲状腺素淀粉样变性心肌病的临床前期进展
背景和目的:诊断转甲状腺素淀粉样变性心肌病(ATTR-CM)需要先进的成像技术,因此无法对临床前疾病进行大规模检测。我们研究了将人工智能(AI)应用于超声心动图(TTE)和心电图(ECG)作为量化 ATTR-CM 临床前趋势的可扩展策略。方法:在耶鲁-纽黑文健康系统(YNHHS)的年龄/性别匹配病例对照数据集上,我们训练了深度学习模型,以识别 TTE 视频和心电图图像上的 ATTR-CM 特异性特征(曲线下面积分别为 0.93 和 0.91)。我们在 YNHHS 的独立人群和休斯顿卫理公会医院(HMH)的外部人群中转诊进行心脏核淀粉样蛋白成像的所有研究中部署了这些模型,以使用年龄/性别调整线性混合模型定义 ATTR-CM 的 AI 定义概率的纵向趋势,并描述早期临床前阶段的分辨指标。结果:在云南新华医院(中位年龄 74 岁,44.3% 为女性)和哈医大一院(中位年龄 69 岁,34.5% 为女性)转诊的 984 名心脏核淀粉样蛋白成像患者中,分别有 112 人(11.4%)和 174 人(21.6%)检测出 ATTR-CM 阳性。在两个队列和两种模式中,从 7,423 张 TTE 和 32,205 张心电图得出的 AI 定义的 ATTR-CM 概率显示,病例与对照组相比,临床诊断前几年的进展速度明显更快(时间 x 组间交互作用 p ≤0.004)。在心脏核淀粉样蛋白成像前的一至三年窗口期,AI-Echo 的敏感性/特异性指标估计为 86.2%/44.2% [YNHHS] vs 65.7%/65.5% [HMH],AI-ECG 的敏感性/特异性指标估计为 89.8%/40.6% [YNHHS] vs 88.5%/35.1% [HMH]。结论:我们证明,针对超声心动图视频和心电图图像的人工智能工具能够对临床前 ATTR-CM 进行可扩展的识别,并标记出可能从风险调整疗法中获益的个体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Where Adults with Heart Failure Die: Insights from the CDC-WONDER Database A longitudinal study of depressive symptom trajectories and risk factors in congestive heart failure Right Ventricular Work and Pulmonary Capillary Wedge Pressure in Heart Failure with Preserved Ejection Fraction Association Between Life's Essential 8 and Atherogenic Index of Plasma in Adults: Insights from NHANES 2007-2018 Efficacy and Safety of Nicorandil for Prevention of Contrast-Induced Nephropathy in Patients Undergoing Coronary Procedures: A Systematic Review and Meta-Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1