Synchronization of fractional order time delayed neural networks using matrix measure approach

S. Jose, V. Parthiban
{"title":"Synchronization of fractional order time delayed neural networks using matrix measure approach","authors":"S. Jose, V. Parthiban","doi":"10.1140/epjs/s11734-024-01300-5","DOIUrl":null,"url":null,"abstract":"<p>This research delves into the utilization of the matrix measure approach (MMA) for the synchronization of fractional order neural networks (FONNs) incorporating time delays. This study introduces a set of criteria for achieving control input within the slave system (FONNs), employing a novel approach based on fractional order Dini-like derivatives within the matrix measure framework. The proposed criteria formulated in fractional order, encompass diverse conditions that align with several sufficient conditions inherent in MMA. Synchronization between the slave and master system is established, ensuring the asymptotic stability between them. Finally, by presenting the numerical result, the efficacy of FONNs synchronization is obtained.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01300-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research delves into the utilization of the matrix measure approach (MMA) for the synchronization of fractional order neural networks (FONNs) incorporating time delays. This study introduces a set of criteria for achieving control input within the slave system (FONNs), employing a novel approach based on fractional order Dini-like derivatives within the matrix measure framework. The proposed criteria formulated in fractional order, encompass diverse conditions that align with several sufficient conditions inherent in MMA. Synchronization between the slave and master system is established, ensuring the asymptotic stability between them. Finally, by presenting the numerical result, the efficacy of FONNs synchronization is obtained.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用矩阵测量方法实现分数阶时延神经网络的同步化
本研究深入探讨了如何利用矩阵度量方法(MMA)实现包含时间延迟的分数阶神经网络(FONNs)的同步。本研究在矩阵度量框架内采用了一种基于分数阶似导数的新方法,引入了一套在从属系统(FONNs)内实现控制输入的标准。所提出的分数阶标准包含多种条件,与 MMA 固有的几个充分条件相一致。建立了从系统和主系统之间的同步,确保了它们之间的渐进稳定性。最后,通过给出数值结果,得出了 FONNs 同步的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of sprott chaotic systems via projection of the attractors using deep learning methods Master–slave synchronization of electrocardiogram chaotic networks dealing with stochastic perturbance Approximate controllability results of $$\psi$$ -Hilfer fractional neutral hemivariational inequalities with infinite delay via almost sectorial operators Characterization of magnetic nanoparticles for magnetic particle spectroscopy-based sensitive cell quantification Jet substructure probe to freeze-in dark matter in alternative cosmological background
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1