{"title":"Real-Time Mixed-Integer Quadratic Programming for Vehicle Decision-Making and Motion Planning","authors":"Rien Quirynen;Sleiman Safaoui;Stefano Di Cairano","doi":"10.1109/TCST.2024.3449703","DOIUrl":null,"url":null,"abstract":"We develop a real-time feasible mixed-integer programming-based decision-making (MIP-DM) system for automated driving (AD). Using a linear vehicle model in a road-aligned coordinate frame, the lane change constraints, collision avoidance, and traffic rules can be formulated as mixed-integer inequalities, resulting in a mixed-integer quadratic program (MIQP). The proposed MIP-DM performs maneuver selection and trajectory generation by solving the MIQP at each sampling instant. While solving MIQPs in real time has been considered intractable in the past, we show that our recently developed solver \n<monospace>BB-ASIPM</monospace>\n is capable of solving MIP-DM problems on embedded hardware in real time. The performance of this approach is illustrated in simulations in various scenarios, including merging points and traffic intersections, and hardware-in-the-loop (HIL) simulations in dSPACE Scalexio and MicroAutoBox-III (MABX-III). Finally, we show experiments using small-scale vehicles.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"77-91"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10668840/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a real-time feasible mixed-integer programming-based decision-making (MIP-DM) system for automated driving (AD). Using a linear vehicle model in a road-aligned coordinate frame, the lane change constraints, collision avoidance, and traffic rules can be formulated as mixed-integer inequalities, resulting in a mixed-integer quadratic program (MIQP). The proposed MIP-DM performs maneuver selection and trajectory generation by solving the MIQP at each sampling instant. While solving MIQPs in real time has been considered intractable in the past, we show that our recently developed solver
BB-ASIPM
is capable of solving MIP-DM problems on embedded hardware in real time. The performance of this approach is illustrated in simulations in various scenarios, including merging points and traffic intersections, and hardware-in-the-loop (HIL) simulations in dSPACE Scalexio and MicroAutoBox-III (MABX-III). Finally, we show experiments using small-scale vehicles.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.