Pub Date : 2024-11-15DOI: 10.1109/TCST.2024.3483093
Luis D. Couto;Jorn Reniers;Dong Zhang;David A. Howey;Michel Kinnaert
Degradation mechanisms affecting the long-term performance of lithium-ion batteries should be monitored and characterized. Such mechanisms, such as loss of lithium inventory (LLI) or active material, can be translated into parameter variations in electrochemical battery models. Here, a reduced-order model (the equivalent hydraulic model) is considered as it provides a good tradeoff between physical interpretability and complexity. The aim is to detect and characterize degradation, namely, to indicate the parameters subject to change, from standard (dis)charge data. To this end, change indicators (or residuals) are computed by combining a state observer and a local statistical approach. Model parameter changes induce changes in the mean of the residual vector which is asymptotically normally distributed with a specified variance. Degradation detection and characterization is achieved by processing the latter residual by statistical tests relying on log-likelihood ratios between multiple simple hypotheses. Results indicate the long-term changes in the main degradation modes affect battery performance. Most degradation modes considered are active at the 0.1% relative parametric change level, but active material loss reaches the 1% parametric change level over the battery lifetime, and 10% parametric change levels are obtained for sluggish diffusion and impedance rise. We show how the proposed methodology could be a useful alternative to methods based only on parameter identification.
{"title":"Degradation Monitoring and Characterization in Lithium-Ion Batteries via the Asymptotic Local Approach","authors":"Luis D. Couto;Jorn Reniers;Dong Zhang;David A. Howey;Michel Kinnaert","doi":"10.1109/TCST.2024.3483093","DOIUrl":"https://doi.org/10.1109/TCST.2024.3483093","url":null,"abstract":"Degradation mechanisms affecting the long-term performance of lithium-ion batteries should be monitored and characterized. Such mechanisms, such as loss of lithium inventory (LLI) or active material, can be translated into parameter variations in electrochemical battery models. Here, a reduced-order model (the equivalent hydraulic model) is considered as it provides a good tradeoff between physical interpretability and complexity. The aim is to detect and characterize degradation, namely, to indicate the parameters subject to change, from standard (dis)charge data. To this end, change indicators (or residuals) are computed by combining a state observer and a local statistical approach. Model parameter changes induce changes in the mean of the residual vector which is asymptotically normally distributed with a specified variance. Degradation detection and characterization is achieved by processing the latter residual by statistical tests relying on log-likelihood ratios between multiple simple hypotheses. Results indicate the long-term changes in the main degradation modes affect battery performance. Most degradation modes considered are active at the 0.1% relative parametric change level, but active material loss reaches the 1% parametric change level over the battery lifetime, and 10% parametric change levels are obtained for sluggish diffusion and impedance rise. We show how the proposed methodology could be a useful alternative to methods based only on parameter identification.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"189-206"},"PeriodicalIF":4.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1109/TCST.2024.3495392
{"title":"2023-2024 Index IEEE Transactions on Control Systems Technology Vol. 32","authors":"","doi":"10.1109/TCST.2024.3495392","DOIUrl":"https://doi.org/10.1109/TCST.2024.3495392","url":null,"abstract":"","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"32 6","pages":"2500-2545"},"PeriodicalIF":4.9,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1109/TCST.2024.3483440
Jaeyeon Jo;Jihwan Yu;Jinkyoo Park
This study introduces a hierarchical interaction model between a shared energy storage system (ESS) operator and self-interested ESS users, referred to as the shared ESS energy trading game (EET game). In the EET game, the ESS operator sets time-varying energy selling and buying prices to regulate energy trading among ESS users. Meanwhile, the ESS users make decisions regarding their energy selling (charging energy to the shared ESS) and buying (discharging energy from the shared ESS) schedules. We model the EET game as a generalized Stackelberg game (GSG) and define a generalized Stackelberg equilibrium (GSE) to identify the optimal strategies for both the ESS operator and ESS users. Within the EET game, we prove the existence of a variational Stackelberg equilibrium (VSE), which is a GSE. To compute this equilibrium, we utilize a gradient-based algorithm that incorporates an implicit gradient. Finally, we validate our model by simulation studies using residential households’ energy demand data and show the effectiveness of our approach in reducing both total energy cost (EC) and the peak-to-average ratio (PAR).
{"title":"Incentive Design of Shared ESS Energy Trading Game","authors":"Jaeyeon Jo;Jihwan Yu;Jinkyoo Park","doi":"10.1109/TCST.2024.3483440","DOIUrl":"https://doi.org/10.1109/TCST.2024.3483440","url":null,"abstract":"This study introduces a hierarchical interaction model between a shared energy storage system (ESS) operator and self-interested ESS users, referred to as the shared ESS energy trading game (EET game). In the EET game, the ESS operator sets time-varying energy selling and buying prices to regulate energy trading among ESS users. Meanwhile, the ESS users make decisions regarding their energy selling (charging energy to the shared ESS) and buying (discharging energy from the shared ESS) schedules. We model the EET game as a generalized Stackelberg game (GSG) and define a generalized Stackelberg equilibrium (GSE) to identify the optimal strategies for both the ESS operator and ESS users. Within the EET game, we prove the existence of a variational Stackelberg equilibrium (VSE), which is a GSE. To compute this equilibrium, we utilize a gradient-based algorithm that incorporates an implicit gradient. Finally, we validate our model by simulation studies using residential households’ energy demand data and show the effectiveness of our approach in reducing both total energy cost (EC) and the peak-to-average ratio (PAR).","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"408-415"},"PeriodicalIF":4.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1109/TCST.2024.3478476
Pratap Bhanu Solanki;Shaunak D. Bopardikar;Xiaobo Tan
Achieving and maintaining line-of-sight (LOS) is an essential attribute for free-space optical (FSO) communication systems as the optical signals are highly directional. We consider the problem of achieving LOS between two agents in a planar setting. We model the underlying agent motion as a discrete-time dynamical system. Each agent seeks to maximize its own output (measurement) function that depends on the states (orientations) of both agents, and furthermore, the agents are required to simultaneously make their moves. Since the output functions are nonconflicting, the beam tracking problem is inherently cooperative; improving one output function concurrently optimizes the other. Nonetheless, challenges arise from the lack of communication between the agents, the absence of state information, and the requirement for simultaneous actions. We propose a novel computationally efficient output feedback control algorithm meeting all these constraints. In particular, we establish that when the level sets of the output functions satisfy certain conditions, the proposed control procedure guarantees that, in a finite number of steps, the system reaches a limiting set that contains the global optimum. The size of this limiting set is proportional to the step size. Simulation results based on an FSO communication setup demonstrate the efficacy of the approach and establish its superiority over two competing approaches, namely the classical extremum seeking control approach and an approach based on the use of an extended Kalman filter, in terms of convergence speed and robustness to disturbance. Experimental results on a setup involving two robots further validate the efficacy and quantify the proposed approach’s performance.
{"title":"Computationally Efficient Control for Cooperative Optical Beam Tracking With Guaranteed Finite-Time Convergence","authors":"Pratap Bhanu Solanki;Shaunak D. Bopardikar;Xiaobo Tan","doi":"10.1109/TCST.2024.3478476","DOIUrl":"https://doi.org/10.1109/TCST.2024.3478476","url":null,"abstract":"Achieving and maintaining line-of-sight (LOS) is an essential attribute for free-space optical (FSO) communication systems as the optical signals are highly directional. We consider the problem of achieving LOS between two agents in a planar setting. We model the underlying agent motion as a discrete-time dynamical system. Each agent seeks to maximize its own output (measurement) function that depends on the states (orientations) of both agents, and furthermore, the agents are required to simultaneously make their moves. Since the output functions are nonconflicting, the beam tracking problem is inherently cooperative; improving one output function concurrently optimizes the other. Nonetheless, challenges arise from the lack of communication between the agents, the absence of state information, and the requirement for simultaneous actions. We propose a novel computationally efficient output feedback control algorithm meeting all these constraints. In particular, we establish that when the level sets of the output functions satisfy certain conditions, the proposed control procedure guarantees that, in a finite number of steps, the system reaches a limiting set that contains the global optimum. The size of this limiting set is proportional to the step size. Simulation results based on an FSO communication setup demonstrate the efficacy of the approach and establish its superiority over two competing approaches, namely the classical extremum seeking control approach and an approach based on the use of an extended Kalman filter, in terms of convergence speed and robustness to disturbance. Experimental results on a setup involving two robots further validate the efficacy and quantify the proposed approach’s performance.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"245-260"},"PeriodicalIF":4.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1109/TCST.2024.3477936
Xiaohang Li;Zhaoyang Tian;Dunke Lu
This article proposes a dynamic event-triggered protocol (ETP)-based controller for a quadruple-tank model to defend against dual-channel denial-of-service (DoS) attacks. Such an attack may inflict serious damage on two communication channels: the sampler-to-controller (STC) and controller-to-actuator (CTA) channels. To reduce bandwidth occupation and energy consumption, a dynamic ETP (DETP) is introduced in the control scheme, which shows resilience against dual-channel attacks. Based on the proposed protocol, a resilient controller with three formulations in view of the occurrences of attacks is codesigned by using triggered data to mitigate the dual-channel DoS attacks and ensure good response characteristics. The designed controller can be proven to make the resultant closed-loop system robustly and asymptotically stable, respectively, by using a piecewise Lyapunov functional method. Simulation results have verified the effectiveness of the proposed control strategy.
{"title":"Event-Triggered Protocol-Based Control for Cyber–Physical Systems Vulnerable to Dual-Channel DoS Attacks","authors":"Xiaohang Li;Zhaoyang Tian;Dunke Lu","doi":"10.1109/TCST.2024.3477936","DOIUrl":"https://doi.org/10.1109/TCST.2024.3477936","url":null,"abstract":"This article proposes a dynamic event-triggered protocol (ETP)-based controller for a quadruple-tank model to defend against dual-channel denial-of-service (DoS) attacks. Such an attack may inflict serious damage on two communication channels: the sampler-to-controller (STC) and controller-to-actuator (CTA) channels. To reduce bandwidth occupation and energy consumption, a dynamic ETP (DETP) is introduced in the control scheme, which shows resilience against dual-channel attacks. Based on the proposed protocol, a resilient controller with three formulations in view of the occurrences of attacks is codesigned by using triggered data to mitigate the dual-channel DoS attacks and ensure good response characteristics. The designed controller can be proven to make the resultant closed-loop system robustly and asymptotically stable, respectively, by using a piecewise Lyapunov functional method. Simulation results have verified the effectiveness of the proposed control strategy.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"369-383"},"PeriodicalIF":4.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1109/TCST.2024.3473769
Mira Khalil;Romain Postoyan;Stéphane Raël
Accurate estimation of the internal states of lithium-ion batteries is key toward improving their management for safety, efficiency, and longevity purposes. Various approaches exist in the literature in this context, among which is designing an observer based on an electrochemical model of the battery dynamics. With this approach, the performance of the observer depends on the accuracy of the considered model. It appears that electrochemical models, and thus their associated observers, typically require to be of high dimension to generate accurate internal variables. In this work, we present a method to mitigate this limitation by correcting the lithium concentrations generated by a general class of finite-dimensional electrochemical models such that they asymptotically match those generated by the original partial differential equations (PDEs) they are based on, for constant input currents. These corrections apply to finite-dimensional models of any order of the considered class. The proposed corrections lead to a new state-space model for which we design observers, whose global, robust convergences are supported by a Lyapunov analysis. Both numerical and experimental validations are presented, which show the improvement of the accuracy of the state estimates as a result of the proposed corrections.
{"title":"Enhancing Accuracy of Finite-Dimensional Models for Lithium-Ion Batteries, Observer Design, and Experimental Validation","authors":"Mira Khalil;Romain Postoyan;Stéphane Raël","doi":"10.1109/TCST.2024.3473769","DOIUrl":"https://doi.org/10.1109/TCST.2024.3473769","url":null,"abstract":"Accurate estimation of the internal states of lithium-ion batteries is key toward improving their management for safety, efficiency, and longevity purposes. Various approaches exist in the literature in this context, among which is designing an observer based on an electrochemical model of the battery dynamics. With this approach, the performance of the observer depends on the accuracy of the considered model. It appears that electrochemical models, and thus their associated observers, typically require to be of high dimension to generate accurate internal variables. In this work, we present a method to mitigate this limitation by correcting the lithium concentrations generated by a general class of finite-dimensional electrochemical models such that they asymptotically match those generated by the original partial differential equations (PDEs) they are based on, for constant input currents. These corrections apply to finite-dimensional models of any order of the considered class. The proposed corrections lead to a new state-space model for which we design observers, whose global, robust convergences are supported by a Lyapunov analysis. Both numerical and experimental validations are presented, which show the improvement of the accuracy of the state estimates as a result of the proposed corrections.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"327-342"},"PeriodicalIF":4.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article addresses the problem of controlling human mobility in order to mitigate an epidemic in a city. We consider a discrete-time human mobility model that captures daily mobility pattern between residences and different destinations in a city and also incorporates epidemic spread at each location. For this city-wide model, we provide techniques to compute optimal mobility control policies, which tune the operating capacities of different destinations depending on their type. To obtain this kind of policies, we solve an optimization problem that takes into account the current epidemic status and maximizes the socioeconomic activity while keeping the total infections below a desired threshold. The proposed solution techniques use an outer approximation method, thanks to the monotonic nature the problem, and a receding-horizon approach. We apply these techniques to the mobility network of Grenoble metropolitan area.
{"title":"Optimizing Urban Mobility for Saving Lives and Economy During an Epidemic Outbreak, With Application to Grenoble","authors":"Ujjwal Pratap;Carlos Canudas-de-Wit;Federica Garin","doi":"10.1109/TCST.2024.3477990","DOIUrl":"https://doi.org/10.1109/TCST.2024.3477990","url":null,"abstract":"This article addresses the problem of controlling human mobility in order to mitigate an epidemic in a city. We consider a discrete-time human mobility model that captures daily mobility pattern between residences and different destinations in a city and also incorporates epidemic spread at each location. For this city-wide model, we provide techniques to compute optimal mobility control policies, which tune the operating capacities of different destinations depending on their type. To obtain this kind of policies, we solve an optimization problem that takes into account the current epidemic status and maximizes the socioeconomic activity while keeping the total infections below a desired threshold. The proposed solution techniques use an outer approximation method, thanks to the monotonic nature the problem, and a receding-horizon approach. We apply these techniques to the mobility network of Grenoble metropolitan area.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"288-303"},"PeriodicalIF":4.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1109/TCST.2024.3477294
Markus Walker;Marcel Reith-Braun;Albert Bauer;Florian Pfaff;Georg Maier;Robin Gruna;Thomas Längle;Jürgen Beyerer;Harald Kruggel-Emden;Uwe D. Hanebeck
The optical bulk material sorting is a key technology on our way toward a circular economy and efficient recycling. However, controlling the sorting accuracy has so far been severely limited, as the achievable accuracy of conventional sorters is strongly determined by the mass flow and the mixing ratio of the incoming particle stream. To enable closed-loop control, in the previous work, we introduced a modification to the sorter design, in which controlled fractions of the already sorted mass flows are returned to the inlet of the sorter. In this article, we now propose two open-loop and two closed-loop feedback (CLF) stochastic model predictive controllers (MPCs) for the control of sorting systems with recirculation operating under dynamically changing conditions. In addition, we propose to integrate a desired minimum accuracy as a chance constraint into our controllers’ stochastic formulation. Our evaluations using a coupled discrete element-computational fluid dynamics (DEM-CFD) simulation show that our controllers considerably improve on the system without recirculation and outperform the previously known controllers. Furthermore, we found that they are able to maintain a predefined minimum quality even in highly dynamic scenarios, making the approach highly valuable for tasks where achieving a certain quality at any point in time is crucial.
{"title":"Stochastic Optimal Control of an Optical Sorter With Material Recirculation","authors":"Markus Walker;Marcel Reith-Braun;Albert Bauer;Florian Pfaff;Georg Maier;Robin Gruna;Thomas Längle;Jürgen Beyerer;Harald Kruggel-Emden;Uwe D. Hanebeck","doi":"10.1109/TCST.2024.3477294","DOIUrl":"https://doi.org/10.1109/TCST.2024.3477294","url":null,"abstract":"The optical bulk material sorting is a key technology on our way toward a circular economy and efficient recycling. However, controlling the sorting accuracy has so far been severely limited, as the achievable accuracy of conventional sorters is strongly determined by the mass flow and the mixing ratio of the incoming particle stream. To enable closed-loop control, in the previous work, we introduced a modification to the sorter design, in which controlled fractions of the already sorted mass flows are returned to the inlet of the sorter. In this article, we now propose two open-loop and two closed-loop feedback (CLF) stochastic model predictive controllers (MPCs) for the control of sorting systems with recirculation operating under dynamically changing conditions. In addition, we propose to integrate a desired minimum accuracy as a chance constraint into our controllers’ stochastic formulation. Our evaluations using a coupled discrete element-computational fluid dynamics (DEM-CFD) simulation show that our controllers considerably improve on the system without recirculation and outperform the previously known controllers. Furthermore, we found that they are able to maintain a predefined minimum quality even in highly dynamic scenarios, making the approach highly valuable for tasks where achieving a certain quality at any point in time is crucial.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"354-368"},"PeriodicalIF":4.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1109/TCST.2024.3477304
Ye Wang;Erik Weyer;Chris Manzie;Angus R. Simpson;Lisa Blinco
Water distribution systems (WDSs) are typically designed with a conservative estimate of the ability of a control system to utilize the available infrastructure. The controller is designed and tuned after a WDS has been laid out, a methodology that may introduce unnecessary conservativeness in both system design and control, adversely impacting operational efficiency and increasing economic costs. To address these limitations, we introduce a method to simultaneously design infrastructure and develop control parameters, the co-design problem, with the aim of improving the overall efficiency of the system. Nevertheless, the co-design of a WDS is a challenging task given the presence of stochastic variables (e.g., water demands and electricity prices). In this article, we propose a tractable stochastic co-design method to design the best tank size and optimal control parameters for WDS, where the expected operating costs are established based on Markov chain theory. We also give a theoretical result showing that the average long-run operating cost converges to the expected operating cost with probability 1. Furthermore, this method is not only applicable to greenfield projects for the co-design of WDSs but can also be utilized to improve the operations of existing WDSs in brownfield projects. The effectiveness and applicability of the co-design method are validated through three illustrative examples and a real-world case study in South Australia.
{"title":"Stochastic Co-Design of Storage and Control for Water Distribution Systems","authors":"Ye Wang;Erik Weyer;Chris Manzie;Angus R. Simpson;Lisa Blinco","doi":"10.1109/TCST.2024.3477304","DOIUrl":"https://doi.org/10.1109/TCST.2024.3477304","url":null,"abstract":"Water distribution systems (WDSs) are typically designed with a conservative estimate of the ability of a control system to utilize the available infrastructure. The controller is designed and tuned after a WDS has been laid out, a methodology that may introduce unnecessary conservativeness in both system design and control, adversely impacting operational efficiency and increasing economic costs. To address these limitations, we introduce a method to simultaneously design infrastructure and develop control parameters, the co-design problem, with the aim of improving the overall efficiency of the system. Nevertheless, the co-design of a WDS is a challenging task given the presence of stochastic variables (e.g., water demands and electricity prices). In this article, we propose a tractable stochastic co-design method to design the best tank size and optimal control parameters for WDS, where the expected operating costs are established based on Markov chain theory. We also give a theoretical result showing that the average long-run operating cost converges to the expected operating cost with probability 1. Furthermore, this method is not only applicable to greenfield projects for the co-design of WDSs but can also be utilized to improve the operations of existing WDSs in brownfield projects. The effectiveness and applicability of the co-design method are validated through three illustrative examples and a real-world case study in South Australia.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"274-287"},"PeriodicalIF":4.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1109/TCST.2024.3473300
Wouter Weekers;Dragan Kostić;Alessandro Saccon;Nathan van de Wouw
High-performance control designs are indispensable in high-end industrial applications. At the same time, tuning a controller for optimal performance only on the basis of model knowledge is generally hampered by model uncertainty, unknown disturbances, and variation in the dynamics between systems of the same make due to manufacturing tolerances. Data-driven control methods facilitate system-specific controller tuning in an automated fashion while taking these aspects into account through measured performance data. This article presents a data-based extremum-seeking approach for the optimization of transient system performance in terms of settling time. A novel cascaded global optimization approach tackles the problem that the settling time depends discontinuously on controller parameters. In addition, it ensures that the resulting controller designs have guaranteed closed-loop stability and robustness margins. The effectiveness of the proposed approach in optimizing transient system behavior is shown experimentally in an industrial case study on a wire bonder system. Herein, it is also shown how to achieve improved performance uniformly over a range of setpoint designs and for position-dependent dynamics.
{"title":"Data-Based Settling-Time Optimization for Linear Feedback Control Systems Using Global Extremum Seeking","authors":"Wouter Weekers;Dragan Kostić;Alessandro Saccon;Nathan van de Wouw","doi":"10.1109/TCST.2024.3473300","DOIUrl":"https://doi.org/10.1109/TCST.2024.3473300","url":null,"abstract":"High-performance control designs are indispensable in high-end industrial applications. At the same time, tuning a controller for optimal performance only on the basis of model knowledge is generally hampered by model uncertainty, unknown disturbances, and variation in the dynamics between systems of the same make due to manufacturing tolerances. Data-driven control methods facilitate system-specific controller tuning in an automated fashion while taking these aspects into account through measured performance data. This article presents a data-based extremum-seeking approach for the optimization of transient system performance in terms of settling time. A novel cascaded global optimization approach tackles the problem that the settling time depends discontinuously on controller parameters. In addition, it ensures that the resulting controller designs have guaranteed closed-loop stability and robustness margins. The effectiveness of the proposed approach in optimizing transient system behavior is shown experimentally in an industrial case study on a wire bonder system. Herein, it is also shown how to achieve improved performance uniformly over a range of setpoint designs and for position-dependent dynamics.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"343-353"},"PeriodicalIF":4.9,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}