Preserving Normal Power Curve Data With Sparse Density via Wind Speed-Power Correlation Trend Cleaning Method

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-09-11 DOI:10.1109/TSTE.2024.3459005
Hongrui Li;Shuangxin Wang;Jiading Jiang;Jun Liu;Junmei Ou;Ziang Zhou
{"title":"Preserving Normal Power Curve Data With Sparse Density via Wind Speed-Power Correlation Trend Cleaning Method","authors":"Hongrui Li;Shuangxin Wang;Jiading Jiang;Jun Liu;Junmei Ou;Ziang Zhou","doi":"10.1109/TSTE.2024.3459005","DOIUrl":null,"url":null,"abstract":"Stochastic wind conditions and curtailment lead to a sparse distribution of normal data compared to outliers on the Wind Power Curve (WPC). This results in the removal of sparse normal data during the data cleaning process, hampering short-term wind power assessment and forecasting. To address this issue, this paper proposes a decision boundary construction method that utilizes the wind speed-power correlation trend to retain normal WPC data. First, leveraging the positive correlation between wind speed and power, an incremental trend search strategy is used to obtain the trend curve. Building on this curve, a scatter motion trend algorithm is introduced to eliminate densely clustered curtailed power data. Finally, a kernel function-based 3-sigma boundary construction method is suggested to further reduce the influence of remaining clustered outliers on decision boundaries. The proposed method is compared to eight advanced algorithms using data from 17 wind turbines across three wind farms, demonstrating superior performance, especially in scenarios with sparse normal data.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"365-376"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10678883/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic wind conditions and curtailment lead to a sparse distribution of normal data compared to outliers on the Wind Power Curve (WPC). This results in the removal of sparse normal data during the data cleaning process, hampering short-term wind power assessment and forecasting. To address this issue, this paper proposes a decision boundary construction method that utilizes the wind speed-power correlation trend to retain normal WPC data. First, leveraging the positive correlation between wind speed and power, an incremental trend search strategy is used to obtain the trend curve. Building on this curve, a scatter motion trend algorithm is introduced to eliminate densely clustered curtailed power data. Finally, a kernel function-based 3-sigma boundary construction method is suggested to further reduce the influence of remaining clustered outliers on decision boundaries. The proposed method is compared to eight advanced algorithms using data from 17 wind turbines across three wind farms, demonstrating superior performance, especially in scenarios with sparse normal data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过风速-功率相关性趋势清理法保存具有稀疏密度的正态功率曲线数据
与风电曲线(WPC)的异常值相比,随机风况和弃风导致正态数据的稀疏分布。这导致在数据清洗过程中,稀疏的正常数据被剔除,阻碍了短期风电的评估和预测。针对这一问题,本文提出了一种利用风速-功率相关趋势来保留正常WPC数据的决策边界构建方法。首先,利用风速与功率之间的正相关关系,采用增量趋势搜索策略获得趋势曲线;在此曲线的基础上,引入了一种散点运动趋势算法来消除密集聚类的裁剪功率数据。最后,提出了一种基于核函数的3-sigma边界构建方法,以进一步降低剩余聚类离群值对决策边界的影响。将所提出的方法与八种先进的算法进行了比较,这些算法使用了来自三个风电场的17个风力涡轮机的数据,证明了优越的性能,特别是在稀疏正态数据的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Table of Contents IEEE Collabratec Get Published in the New IEEE Open Access Journal of Power and Energy Share Your Preprint Research with the World! IEEE Transactions on Sustainable Energy Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1