Set-Valued Regression of Wind Power Curve

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-09-11 DOI:10.1109/TSTE.2024.3458916
Xun Shen
{"title":"Set-Valued Regression of Wind Power Curve","authors":"Xun Shen","doi":"10.1109/TSTE.2024.3458916","DOIUrl":null,"url":null,"abstract":"Precise wind power curves are pivotal for monitoring the status of wind turbines and predicting wind power, which are important parts of utilizing wind energy in power systems. However, the data sets for training wind power curve models have a critical issue. A considerable proportion of the data sets is abnormal due to communication failure and other factors. Using the data sets with abnormal data will significantly deteriorate the fitting performance. This paper resolves the above issue by proposing a unified way to achieve abnormal data detection and curve fitting. Instead of regression with scalar output, set-valued regression of the wind power curve is considered, giving a set of wind power for a given wind speed. Interval neural network is adopted as the model for set-valued regression. A chance-constrained optimization problem is formulated to train an interval neural network. The obtained interval neural network can specify a subset with the normal data area, which can be used to give the threshold for abnormal data detection. Besides, the center points of the interval can be used as the fitted wind power curve. Since the formulated chance-constrained optimization problem is intractable, a sample-based sigmoidal approximation method is proposed to approximately solve it. The convergence and probabilistic feasibility of the approximation are given. Finally, experimental validations have been conducted to compare the proposed method with several existing methods.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"350-364"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10678875/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Precise wind power curves are pivotal for monitoring the status of wind turbines and predicting wind power, which are important parts of utilizing wind energy in power systems. However, the data sets for training wind power curve models have a critical issue. A considerable proportion of the data sets is abnormal due to communication failure and other factors. Using the data sets with abnormal data will significantly deteriorate the fitting performance. This paper resolves the above issue by proposing a unified way to achieve abnormal data detection and curve fitting. Instead of regression with scalar output, set-valued regression of the wind power curve is considered, giving a set of wind power for a given wind speed. Interval neural network is adopted as the model for set-valued regression. A chance-constrained optimization problem is formulated to train an interval neural network. The obtained interval neural network can specify a subset with the normal data area, which can be used to give the threshold for abnormal data detection. Besides, the center points of the interval can be used as the fitted wind power curve. Since the formulated chance-constrained optimization problem is intractable, a sample-based sigmoidal approximation method is proposed to approximately solve it. The convergence and probabilistic feasibility of the approximation are given. Finally, experimental validations have been conducted to compare the proposed method with several existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风力曲线的集值回归
准确的风电功率曲线是风电机组状态监测和风电功率预测的关键,是风电系统利用风能的重要组成部分。然而,用于训练风力曲线模型的数据集存在一个关键问题。由于通信故障等因素,相当一部分数据集出现异常。使用含有异常数据的数据集将显著降低拟合性能。本文提出了一种统一的异常数据检测和曲线拟合方法,解决了上述问题。考虑风电功率曲线的集值回归,而不是标量输出回归,给出给定风速下的一组风电功率。采用区间神经网络作为集值回归模型。提出了一个训练区间神经网络的机会约束优化问题。得到的区间神经网络可以用正常数据区域指定一个子集,用来给出异常数据检测的阈值。此外,区间的中心点可作为拟合的风电曲线。针对所提出的机会约束优化问题的难解性,提出了一种基于样本的s型逼近方法进行近似求解。给出了该近似的收敛性和概率可行性。最后进行了实验验证,将所提出的方法与现有的几种方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Table of Contents IEEE Collabratec Get Published in the New IEEE Open Access Journal of Power and Energy Share Your Preprint Research with the World! IEEE Transactions on Sustainable Energy Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1