Deep Reinforcement Learning-Based Dynamic Droop Control Strategy for Real-Time Optimal Operation and Frequency Regulation

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-09-04 DOI:10.1109/TSTE.2024.3454298
Woon-Gyu Lee;Hak-Man Kim
{"title":"Deep Reinforcement Learning-Based Dynamic Droop Control Strategy for Real-Time Optimal Operation and Frequency Regulation","authors":"Woon-Gyu Lee;Hak-Man Kim","doi":"10.1109/TSTE.2024.3454298","DOIUrl":null,"url":null,"abstract":"The optimal operation of an islanded AC microgrid system is achieved by proper power sharing among generators. The conventional distributed cost optimization strategies use a communication system to converge incremental costs. However, these methods are dependent on the distributed communication network and do not consider frequency deviations for real-time load variability. Thus, this paper proposes a DRL-based dynamic droop control strategy. The proposed twin delayed DDPG-based DRL interacts with the environment to learn the optimal droop gain for reducing generation cost and frequency deviation. The trained agent uses local information to transmit dynamic droop gains to the primary controller as demand load changes. It can simplify the control structure by omitting the secondary layer for optimal operation and power quality. The proposed control strategy is designed with a centralized DRL training process and distributed execution, enabling real-time distributed optimal operation. The comparison results with conventional distributed strategy confirms better control performance of the proposed strategy. Finally, the feasibility of the proposed strategy was verified by experiment on AC microgrid testbed.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"284-294"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10664502/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The optimal operation of an islanded AC microgrid system is achieved by proper power sharing among generators. The conventional distributed cost optimization strategies use a communication system to converge incremental costs. However, these methods are dependent on the distributed communication network and do not consider frequency deviations for real-time load variability. Thus, this paper proposes a DRL-based dynamic droop control strategy. The proposed twin delayed DDPG-based DRL interacts with the environment to learn the optimal droop gain for reducing generation cost and frequency deviation. The trained agent uses local information to transmit dynamic droop gains to the primary controller as demand load changes. It can simplify the control structure by omitting the secondary layer for optimal operation and power quality. The proposed control strategy is designed with a centralized DRL training process and distributed execution, enabling real-time distributed optimal operation. The comparison results with conventional distributed strategy confirms better control performance of the proposed strategy. Finally, the feasibility of the proposed strategy was verified by experiment on AC microgrid testbed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度强化学习的动态下垂控制策略,用于实时优化运行和频率调节
孤岛交流微电网系统的最佳运行是通过发电机之间合理的功率分配来实现的。传统的分布式成本优化策略使用通信系统来收敛增量成本。然而,这些方法依赖于分布式通信网络,并且没有考虑实时负载变化的频率偏差。因此,本文提出了一种基于drl的动态下垂控制策略。提出的基于双延迟ddpg的DRL与环境交互,以学习降低发电成本和频率偏差的最佳下垂增益。当需求负荷发生变化时,经过训练的智能体利用局部信息将动态下垂增益传递给主控制器。它省去了第二层,简化了控制结构,实现了最佳的运行和电能质量。该控制策略采用集中的DRL训练过程和分布式执行,实现实时分布式最优运行。与传统分布式策略的对比结果证实了该策略具有更好的控制性能。最后,通过交流微电网试验台的实验验证了所提策略的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Table of Contents IEEE Collabratec Get Published in the New IEEE Open Access Journal of Power and Energy Share Your Preprint Research with the World! IEEE Transactions on Sustainable Energy Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1