{"title":"Optimal Dispatch Strategy for a Multi-Microgrid Cooperative Alliance Using a Two-Stage Pricing Mechanism","authors":"Yonghui Nie;Zhi Li;Jie Zhang;Lei Gao;Yang Li;Hengyu Zhou","doi":"10.1109/TSTE.2024.3449909","DOIUrl":null,"url":null,"abstract":"To coordinate resources among multi-level stakeholders and enhance the integration of electric vehicles (EVs) into multi-microgrids, this study proposes an optimal dispatch strategy within a multi-microgrid cooperative alliance using a nuanced two-stage pricing mechanism. Initially, the strategy assesses electric energy interactions between microgrids and distribution networks to establish a foundation for collaborative scheduling. The two-stage pricing mechanism initiates with a leader-follower game, wherein the microgrid operator acts as the leader and users as followers. Subsequently, it adjusts EV tariffs based on the game's equilibrium, taking into account factors such as battery degradation and travel needs to optimize EVs' electricity consumption. Furthermore, a bi-level optimization model refines power interactions and pricing strategies across the network, significantly enhancing demand response capabilities and economic outcomes. Simulation results demonstrate that this strategy not only increases renewable energy consumption but also reduces energy costs, thereby improving the overall efficiency and sustainability of the system.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 1","pages":"174-188"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10648707/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To coordinate resources among multi-level stakeholders and enhance the integration of electric vehicles (EVs) into multi-microgrids, this study proposes an optimal dispatch strategy within a multi-microgrid cooperative alliance using a nuanced two-stage pricing mechanism. Initially, the strategy assesses electric energy interactions between microgrids and distribution networks to establish a foundation for collaborative scheduling. The two-stage pricing mechanism initiates with a leader-follower game, wherein the microgrid operator acts as the leader and users as followers. Subsequently, it adjusts EV tariffs based on the game's equilibrium, taking into account factors such as battery degradation and travel needs to optimize EVs' electricity consumption. Furthermore, a bi-level optimization model refines power interactions and pricing strategies across the network, significantly enhancing demand response capabilities and economic outcomes. Simulation results demonstrate that this strategy not only increases renewable energy consumption but also reduces energy costs, thereby improving the overall efficiency and sustainability of the system.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.