Eihab E.E. Ahmed;Alpaslan Demirci;Gokturk Poyrazoglu;Saeed D. Manshadi
{"title":"An Equitable Active Power Curtailment Framework for Overvoltage Mitigation in PV-Rich Active Distribution Networks","authors":"Eihab E.E. Ahmed;Alpaslan Demirci;Gokturk Poyrazoglu;Saeed D. Manshadi","doi":"10.1109/TSTE.2024.3442834","DOIUrl":null,"url":null,"abstract":"There are various active power curtailment (APC) approaches to mitigate overvoltage. In PV-rich networks, the overvoltage happens to be especially at the end of the distribution feeders. While APC helps maintain voltage within operational limits, it results in varying degrees of renewable curtailment for each prosumer. This curtailment increases as the distance from the transformer grows. Hence, these approaches introduce unfairness among prosumers. This study proposes an equitable APC (EAPC) based on the prosumer's self-consumption rate (SCR). The method calculates each prosumer's SCR, compares it with the precalculated critical SCR, and calculates a fair share of curtailment for each prosumer. Subsequently, leveraging the voltage sensitivity matrix obtained from the inverse of the Jacobian matrix, the new active power injection at the point of common coupling (PCC) is calculated to mitigate the overvoltage. To show the effectiveness of the proposed method, a comparison with three other methods is presented under various PV penetration levels. The proposed EAPC is less sensitive to the prosumer's location and improves fairness among prosumers. In addition, a battery deployment scenario is analysed considering the annual supply and demand balance to suppress the extra curtailment introduced by EAPC without increasing the battery capacity.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2745-2757"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10636072/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
There are various active power curtailment (APC) approaches to mitigate overvoltage. In PV-rich networks, the overvoltage happens to be especially at the end of the distribution feeders. While APC helps maintain voltage within operational limits, it results in varying degrees of renewable curtailment for each prosumer. This curtailment increases as the distance from the transformer grows. Hence, these approaches introduce unfairness among prosumers. This study proposes an equitable APC (EAPC) based on the prosumer's self-consumption rate (SCR). The method calculates each prosumer's SCR, compares it with the precalculated critical SCR, and calculates a fair share of curtailment for each prosumer. Subsequently, leveraging the voltage sensitivity matrix obtained from the inverse of the Jacobian matrix, the new active power injection at the point of common coupling (PCC) is calculated to mitigate the overvoltage. To show the effectiveness of the proposed method, a comparison with three other methods is presented under various PV penetration levels. The proposed EAPC is less sensitive to the prosumer's location and improves fairness among prosumers. In addition, a battery deployment scenario is analysed considering the annual supply and demand balance to suppress the extra curtailment introduced by EAPC without increasing the battery capacity.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.