{"title":"Constitutive Modeling of High‐Temperature Deformation Behavior of Nonoriented Electrical Steels as Compared to Machine Learning","authors":"Gyanaranjan Mishra, Jubert Pasco, Thomas McCarthy, Kudakwashe Nyamuchiwa, Youliang He, Clodualdo Aranas","doi":"10.1002/srin.202300549","DOIUrl":null,"url":null,"abstract":"Hot rolling is a critical thermomechanical processing step for nonoriented electrical steel (NOES) to achieve optimal mechanical and magnetic properties. Depending on the silicon and carbon contents, the electrical steel may or may not undergo austenite–ferrite phase transformation during hot rolling, which requires different process controls as the austenite and ferrite show different flow stresses at high temperatures. Herein, the high‐temperature flow behaviors of two nonoriented electrical steels with silicon contents of 1.3 and 3.2 wt% are investigated through hot compression tests. The hot deformation temperature is varied from 850 to 1050 °C, and the strain rate is differentiated from 0.01 to 1.0 s<jats:sup>−1</jats:sup>. The measured stress‐strain data are fitted using various constitutive models (combined with optimization techniques), namely, Johnson–Cook, modified Johnson–Cook, Zener–Hollomon, Hensel–Spittel, modified Hensel–Spittel, and modified Zerilli–Armstrong. The results are also compared with a model based on deep neural network (DNN). It is shown that the Hensel–Spittel model results in the smallest average absolute relative error among all the constitutive models, and the DNN model can perfectly track almost all the experimental flow stresses over the entire ranges of temperature, strain rate, and strain.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202300549","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hot rolling is a critical thermomechanical processing step for nonoriented electrical steel (NOES) to achieve optimal mechanical and magnetic properties. Depending on the silicon and carbon contents, the electrical steel may or may not undergo austenite–ferrite phase transformation during hot rolling, which requires different process controls as the austenite and ferrite show different flow stresses at high temperatures. Herein, the high‐temperature flow behaviors of two nonoriented electrical steels with silicon contents of 1.3 and 3.2 wt% are investigated through hot compression tests. The hot deformation temperature is varied from 850 to 1050 °C, and the strain rate is differentiated from 0.01 to 1.0 s−1. The measured stress‐strain data are fitted using various constitutive models (combined with optimization techniques), namely, Johnson–Cook, modified Johnson–Cook, Zener–Hollomon, Hensel–Spittel, modified Hensel–Spittel, and modified Zerilli–Armstrong. The results are also compared with a model based on deep neural network (DNN). It is shown that the Hensel–Spittel model results in the smallest average absolute relative error among all the constitutive models, and the DNN model can perfectly track almost all the experimental flow stresses over the entire ranges of temperature, strain rate, and strain.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.