{"title":"Contents: steel research int. 11/2024","authors":"","doi":"10.1002/srin.202470113","DOIUrl":"https://doi.org/10.1002/srin.202470113","url":null,"abstract":"","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/srin.202470113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IF 1.9 3区 材料科学Q2 METALLURGY & METALLURGICAL ENGINEERING
<p>He started his professional career between 1976 and 1979 as a research associate in the Department of Industrial Furnaces and Heat Engineering of RWTH Aachen University. He then took positions in the steel industry from 1979 till 2002. He first served at Vereinigte Deutsche Metallwerke as manager quality and research of the melt shop Unna. Since 1987 he headed the metallurgical department of Krupp Nirosta (later ThyssenKrupp Nirosta).</p><p>After habilitation In 1998 he became, in addition to his industrial activity, private lecturer (Privat-Dozent) at the RWTH Aachen for the topic Metallurgy and High Temperature Reaction Technique. In 2002, Piotr Scheller accepted the call for the Chair of Iron and Steel Metallurgy at TU Bergakademie Freiberg in Saxony. Until January 2012 he headed the Institute for Iron and Steel Technology which can look back on a long and important history. He also served as the dean of the Faculty for Materials Science and Materials Engineering, he initiated collaborations between the TU Freiberg and universities in Poland, China, South Korea, Sweden and Ukraine. In 2011 he received the »Medal of Honor« from the Academy for Mining and Metallurgy Krakow for his scientific achievements in Saxony-Polish cooperation. During his active time in Freiberg he built up a laboratory with the most modern experimental techniques for the measurements of surface tension and viscosities of molten phase at steelmaking temperatures along with numerous other experimental equipment. Since his retirement he has been invited as visiting professor by a number of famous universities in the world.</p><p></p><p>His achievements in the scientific field are comprehensive and very diverse. Based on industrial experiments, Piotr Scheller described the flow behavior in the ladle and delivered important contributions to the kinetics of nitrogen transfer between gas and Cr-Ni-alloys. The precipitation of non-metallic inclusions especially in the continuous casting process was the starting point for the investigation of the interfacial phenomena between liquid steel and slag. In fact, his contributions in the area of interfacial phenomena and the application of the same in process metallurgy are extremely important in modelling various two phase reactions in metallurgical processes. Professor Scheller has been author of ca. 200 publications in reputed journals in the field of process metallurgy. His contributions to the book “Treatise on Process Metallurgy”, Elsevier publications, both as section editor as well as a contributor to several chapters, are highly significant. The 2nd edition of this book, scheduled early 2024, will see further contributions of him. He is owner of 6 patents/patent applications in the field if iron and steelmaking.</p><p>This special issue in steel research international is dedicated to Professor Scheller on the occasion of his 75th birthday in 2024. We hope for many future meetings with this charming scientist and wish him man
{"title":"","authors":"","doi":"10.1002/srin.202300677","DOIUrl":"https://doi.org/10.1002/srin.202300677","url":null,"abstract":"<p>He started his professional career between 1976 and 1979 as a research associate in the Department of Industrial Furnaces and Heat Engineering of RWTH Aachen University. He then took positions in the steel industry from 1979 till 2002. He first served at Vereinigte Deutsche Metallwerke as manager quality and research of the melt shop Unna. Since 1987 he headed the metallurgical department of Krupp Nirosta (later ThyssenKrupp Nirosta).</p><p>After habilitation In 1998 he became, in addition to his industrial activity, private lecturer (Privat-Dozent) at the RWTH Aachen for the topic Metallurgy and High Temperature Reaction Technique. In 2002, Piotr Scheller accepted the call for the Chair of Iron and Steel Metallurgy at TU Bergakademie Freiberg in Saxony. Until January 2012 he headed the Institute for Iron and Steel Technology which can look back on a long and important history. He also served as the dean of the Faculty for Materials Science and Materials Engineering, he initiated collaborations between the TU Freiberg and universities in Poland, China, South Korea, Sweden and Ukraine. In 2011 he received the »Medal of Honor« from the Academy for Mining and Metallurgy Krakow for his scientific achievements in Saxony-Polish cooperation. During his active time in Freiberg he built up a laboratory with the most modern experimental techniques for the measurements of surface tension and viscosities of molten phase at steelmaking temperatures along with numerous other experimental equipment. Since his retirement he has been invited as visiting professor by a number of famous universities in the world.</p><p></p><p>His achievements in the scientific field are comprehensive and very diverse. Based on industrial experiments, Piotr Scheller described the flow behavior in the ladle and delivered important contributions to the kinetics of nitrogen transfer between gas and Cr-Ni-alloys. The precipitation of non-metallic inclusions especially in the continuous casting process was the starting point for the investigation of the interfacial phenomena between liquid steel and slag. In fact, his contributions in the area of interfacial phenomena and the application of the same in process metallurgy are extremely important in modelling various two phase reactions in metallurgical processes. Professor Scheller has been author of ca. 200 publications in reputed journals in the field of process metallurgy. His contributions to the book “Treatise on Process Metallurgy”, Elsevier publications, both as section editor as well as a contributor to several chapters, are highly significant. The 2nd edition of this book, scheduled early 2024, will see further contributions of him. He is owner of 6 patents/patent applications in the field if iron and steelmaking.</p><p>This special issue in steel research international is dedicated to Professor Scheller on the occasion of his 75th birthday in 2024. We hope for many future meetings with this charming scientist and wish him man","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/srin.202300677","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contents: steel research int. 10/2024","authors":"","doi":"10.1002/srin.202470103","DOIUrl":"https://doi.org/10.1002/srin.202470103","url":null,"abstract":"","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/srin.202470103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soumitra Kumar Dinda, Donghui Li, Fernando Guerra, Chad Cathcart, Mansoor Barati
Flow efficiency in a two-strand continuous casting tundish is studied by analyzing the residential time distribution (RTD) curves in a small-scale tundish water model using a conductive NaCl solution tracer. The velocity fields in the tundish water model are measured by particle image velocimetry, which is used to validate the results of the mathematical model in the article. It is found that the tracer concentration has a significant impact on the predicted dead volume fraction in the RTD analysis. Validated mathematical modeling of the computational fluid dynamics (CFD) technology is performed to explore the root cause of the defective results in the RTD analysis. It is found that the flow inside the tundish is sensitive to density variations caused by the injected tracer. A denser tracer will stay lower in the tundish by gravity and flow out of the tundish more quickly. A proper tracer concentration in the water model experiments is discussed to visualize the dead volume and improve tundish furniture design efficiently for future work, a new method using CFD modeling is proposed in this article, which can directly demonstrate the dead volume's location.
{"title":"Continuous Casting Tundish Dead Volume Study by Physical Modeling and Computational Investigation","authors":"Soumitra Kumar Dinda, Donghui Li, Fernando Guerra, Chad Cathcart, Mansoor Barati","doi":"10.1002/srin.202400125","DOIUrl":"https://doi.org/10.1002/srin.202400125","url":null,"abstract":"<p>Flow efficiency in a two-strand continuous casting tundish is studied by analyzing the residential time distribution (RTD) curves in a small-scale tundish water model using a conductive NaCl solution tracer. The velocity fields in the tundish water model are measured by particle image velocimetry, which is used to validate the results of the mathematical model in the article. It is found that the tracer concentration has a significant impact on the predicted dead volume fraction in the RTD analysis. Validated mathematical modeling of the computational fluid dynamics (CFD) technology is performed to explore the root cause of the defective results in the RTD analysis. It is found that the flow inside the tundish is sensitive to density variations caused by the injected tracer. A denser tracer will stay lower in the tundish by gravity and flow out of the tundish more quickly. A proper tracer concentration in the water model experiments is discussed to visualize the dead volume and improve tundish furniture design efficiently for future work, a new method using CFD modeling is proposed in this article, which can directly demonstrate the dead volume's location.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Central coke charging (CCC) is a widely used burden distribution method for blast furnaces (BFs). Adjusting the central coke ratio can change the burden temperature field and affect the smooth operation of BF. This study presents a coupled physical and mathematical model, incorporating particle motion, gas flow, and heat transfer between the burden and gas in two 5500 m3 BFs. The central coke ratios of the blast furnace A (BFA) and blast furnace B (BFB) is 15% and 20%, respectively. The root positions of the cohesive zone in the BFA and BFB are in the lower part of the stack and bosh zones, respectively. In the central area of the BF, the gas flow rate, gas temperature, and burden temperature of the BFB are higher. In the edge area of the BF, the gas flow rate, gas temperature, and burden temperature of the BFA are higher. The actual top gas temperature and gas pressure verify the accuracy of the proposed model. This model investigates the influence of the central coke ratio on the position of the cohesive zone, gas flow rate, gas temperature, and burden temperature, providing a cost‐effective method for studying the effect of the burden distribution matrix on the internal state of the BF.
{"title":"Influence of Central Coke Ratio on the Internal State of Blast Furnace","authors":"Pengbo Liu, Shusen Cheng, Zhao Liu","doi":"10.1002/srin.202400356","DOIUrl":"https://doi.org/10.1002/srin.202400356","url":null,"abstract":"Central coke charging (CCC) is a widely used burden distribution method for blast furnaces (BFs). Adjusting the central coke ratio can change the burden temperature field and affect the smooth operation of BF. This study presents a coupled physical and mathematical model, incorporating particle motion, gas flow, and heat transfer between the burden and gas in two 5500 m<jats:sup>3</jats:sup> BFs. The central coke ratios of the blast furnace A (BFA) and blast furnace B (BFB) is 15% and 20%, respectively. The root positions of the cohesive zone in the BFA and BFB are in the lower part of the stack and bosh zones, respectively. In the central area of the BF, the gas flow rate, gas temperature, and burden temperature of the BFB are higher. In the edge area of the BF, the gas flow rate, gas temperature, and burden temperature of the BFA are higher. The actual top gas temperature and gas pressure verify the accuracy of the proposed model. This model investigates the influence of the central coke ratio on the position of the cohesive zone, gas flow rate, gas temperature, and burden temperature, providing a cost‐effective method for studying the effect of the burden distribution matrix on the internal state of the BF.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bharath Vasudev Rangavittal, Herbert Köchner, Björn Glaser
For today's high‐quality steel production, good control of slag composition is essential in secondary steelmaking. However, the conventional slag analysis practice, involving sampling, sample preparation, and analysis, is very time‐consuming. This work is the first step toward an investigation of infrared (IR)‐based systems and can be used for online slag composition monitoring using the principle that different slag compositions have different emissivities in the IR wavelength range. Therefore, this work experimentally determines emissivity values of slags as a function of composition at steelmaking temperature, since available data for slags are very limited in the literature. The emissivities of three different slag compositions belonging to the Al2O3–CaO–SiO2–MgO system are investigated at 1773 K. The investigated emissivities are in the range of 0.75–0.87, with the best repeatability seen in the slag which is fully liquid at 1773 K. Variations in emissivities are observed within the other slags due to the presence of solid phases. Although the data clearly indicate a difference of emissivities as a function of slag composition, further experiments must be performed to evaluate the emissivities of other characteristic slags at different temperatures in order to further assess the applicability of IR‐based systems for slag composition control.
为了生产出高质量的钢材,在二次炼钢过程中对炉渣成分进行良好控制至关重要。然而,传统的炉渣分析方法包括取样、样品制备和分析,非常耗时。这项工作是研究基于红外(IR)系统的第一步,利用不同炉渣成分在红外波长范围内具有不同发射率的原理,可用于在线炉渣成分监测。因此,这项工作通过实验确定了炉渣在炼钢温度下作为成分函数的发射率值,因为炉渣的可用数据在文献中非常有限。在 1773 K 下,研究了属于 Al2O3-CaO-SiO2-MgO 体系的三种不同成分炉渣的发射率。所研究的发射率范围为 0.75-0.87,其中在 1773 K 下完全液态的炉渣重复性最好。尽管数据清楚地表明了发射率作为炉渣成分函数的差异,但为了进一步评估基于红外系统的炉渣成分控制的适用性,必须进行进一步的实验来评估其他特征炉渣在不同温度下的发射率。
{"title":"Experimental Determination of Slag Emissivities for Enhanced Slag Control by Infrared‐Based Systems","authors":"Bharath Vasudev Rangavittal, Herbert Köchner, Björn Glaser","doi":"10.1002/srin.202400277","DOIUrl":"https://doi.org/10.1002/srin.202400277","url":null,"abstract":"For today's high‐quality steel production, good control of slag composition is essential in secondary steelmaking. However, the conventional slag analysis practice, involving sampling, sample preparation, and analysis, is very time‐consuming. This work is the first step toward an investigation of infrared (IR)‐based systems and can be used for online slag composition monitoring using the principle that different slag compositions have different emissivities in the IR wavelength range. Therefore, this work experimentally determines emissivity values of slags as a function of composition at steelmaking temperature, since available data for slags are very limited in the literature. The emissivities of three different slag compositions belonging to the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–CaO–SiO<jats:sub>2</jats:sub>–MgO system are investigated at 1773 K. The investigated emissivities are in the range of 0.75–0.87, with the best repeatability seen in the slag which is fully liquid at 1773 K. Variations in emissivities are observed within the other slags due to the presence of solid phases. Although the data clearly indicate a difference of emissivities as a function of slag composition, further experiments must be performed to evaluate the emissivities of other characteristic slags at different temperatures in order to further assess the applicability of IR‐based systems for slag composition control.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oguz Gülbay, Klaus Büßenschütt, Aleksandra Kozlowska, Adam Grajcar, Alexander Gramlich
The influence of different microstructures on the plastic stability of an air‐hardened industrially produced medium‐manganese steel is presented. For this matter, heat treatment parameters before and during intercritical annealing (IA) are varied, to achieve different microstructures. The resulting duplex microstructure is consecutively tested by tensile tests, which are monitored by digital image correlation (DIC) to obtain information on the local plastic deformation. The tests are accompanied by microstructure investigations using optical, scanning electron, and transmission electron microscopy. Finally, X‐ray and electron backscatter diffraction experiments are performed before and after deformation, to describe the altering phase fractions. It is demonstrated that the effect of the deformation temperature prior to IA treatment has a significant influence on the duplex microstructure, as it changes the austenite morphology from lamellar to globular and increases the phase fraction. The change in austenite phase fraction and morphology results in a higher yield strength (≈100 MPa), as well as higher uniform and total elongations (+2% and +5%, respectively). The DIC and tensile tests reveal that these differences in the austenite phase lead to a complete change in the strain hardening behavior, from continuous flow to discontinuous serrated flow, with clearly visible deformation bands during plastic deformation.
本文介绍了不同微观结构对工业生产的空气硬化中锰钢塑性稳定性的影响。为此,改变了临界退火(IA)前和退火过程中的热处理参数,以获得不同的微观结构。由此产生的双相微观结构通过拉伸试验进行连续测试,并通过数字图像相关(DIC)进行监测,以获得局部塑性变形的信息。在进行测试的同时,还使用光学显微镜、扫描电子显微镜和透射电子显微镜对微观结构进行研究。最后,在变形前后进行了 X 射线和电子反向散射衍射实验,以描述相分数的变化。结果表明,IA 处理前的变形温度对双相微观结构有重大影响,因为它使奥氏体形态从片状变为球状,并增加了相分数。奥氏体相分数和形态的变化导致了更高的屈服强度(≈100 兆帕)以及更高的均匀伸长率和总伸长率(分别为 +2% 和 +5%)。DIC 和拉伸试验表明,奥氏体相的这些变化导致应变硬化行为发生了彻底改变,从连续流动转变为不连续的锯齿流动,在塑性变形过程中出现了清晰可见的变形带。
{"title":"The Influence of Microstructure and Process Design on the Plastic Stability of 4 wt% Medium‐Manganese Steels","authors":"Oguz Gülbay, Klaus Büßenschütt, Aleksandra Kozlowska, Adam Grajcar, Alexander Gramlich","doi":"10.1002/srin.202400575","DOIUrl":"https://doi.org/10.1002/srin.202400575","url":null,"abstract":"The influence of different microstructures on the plastic stability of an air‐hardened industrially produced medium‐manganese steel is presented. For this matter, heat treatment parameters before and during intercritical annealing (IA) are varied, to achieve different microstructures. The resulting duplex microstructure is consecutively tested by tensile tests, which are monitored by digital image correlation (DIC) to obtain information on the local plastic deformation. The tests are accompanied by microstructure investigations using optical, scanning electron, and transmission electron microscopy. Finally, X‐ray and electron backscatter diffraction experiments are performed before and after deformation, to describe the altering phase fractions. It is demonstrated that the effect of the deformation temperature prior to IA treatment has a significant influence on the duplex microstructure, as it changes the austenite morphology from lamellar to globular and increases the phase fraction. The change in austenite phase fraction and morphology results in a higher yield strength (≈100 MPa), as well as higher uniform and total elongations (+2% and +5%, respectively). The DIC and tensile tests reveal that these differences in the austenite phase lead to a complete change in the strain hardening behavior, from continuous flow to discontinuous serrated flow, with clearly visible deformation bands during plastic deformation.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liquid steel atomization using close‐coupled nozzles is highly dependent on the relationship between momentum flux ratio, gas–liquid ratio, aspiration pressure, and operating pressure of inert gases. A strong correlation between these parameters and the final powder must be assumed. Understanding these parameters, their influence on the process, and their interactions with each other is indispensable for efficient powder production. In particular, the industrial application of close‐coupled atomization nozzles, which develop a thin pre‐film on the nozzle tip, is not yet fully understood. A model experiment is presented to investigate interactions between the flow conditions of the gaseous and liquid phases, focusing on recirculation phenomena inside the atomization zone. The experiments show the influence of liquid and gas flow conditions on the spray geometry and the liquid core length, as well as the strong dependence of the liquid mass flux on the gas flow. The aspiration pressure below the liquid nozzle is sensitive to gas pressure and has a major influence on the development of the liquid core and the pre‐film, as it increases the liquid mass flux. For practical application, the results confirm an optimal operating point of interacting system parameters, which leads to high‐quality atomization with minimal use of resources.
{"title":"Phenomenological Study of the Atomization Process in Pre‐Filming Nozzles Typically Used for Steel Atomization","authors":"Tom Kasper, Max Finster, Rüdiger Schwarze","doi":"10.1002/srin.202400138","DOIUrl":"https://doi.org/10.1002/srin.202400138","url":null,"abstract":"Liquid steel atomization using close‐coupled nozzles is highly dependent on the relationship between momentum flux ratio, gas–liquid ratio, aspiration pressure, and operating pressure of inert gases. A strong correlation between these parameters and the final powder must be assumed. Understanding these parameters, their influence on the process, and their interactions with each other is indispensable for efficient powder production. In particular, the industrial application of close‐coupled atomization nozzles, which develop a thin pre‐film on the nozzle tip, is not yet fully understood. A model experiment is presented to investigate interactions between the flow conditions of the gaseous and liquid phases, focusing on recirculation phenomena inside the atomization zone. The experiments show the influence of liquid and gas flow conditions on the spray geometry and the liquid core length, as well as the strong dependence of the liquid mass flux on the gas flow. The aspiration pressure below the liquid nozzle is sensitive to gas pressure and has a major influence on the development of the liquid core and the pre‐film, as it increases the liquid mass flux. For practical application, the results confirm an optimal operating point of interacting system parameters, which leads to high‐quality atomization with minimal use of resources.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Density, surface tension, and viscosity of various liquid electrical steels are measured at different temperatures, varying in their silicon content between 3 and 6 mass%. Density and surface tension are determined using the maximum bubble pressure method, while viscosity is investigated comparatively using a vibrating finger viscometer and an oscillating crucible viscometer. The results are compared with models known from the literature. Based on this, the density of the steel [ρ] = kg m−3 and the surface tension [σ] = N m−1 can be described as a function of temperature [θ] = °C and silicon content [Si] = mass% using the equations: , . There is a lack of experimental data in the literature for high‐temperature thermophysical properties for electrical steels. This underlines once again the novelty and significance of this study, as the determined thermophysical properties are essential for a wide range of applications. For instance, they are crucial in the production of metallic powders for additive manufacturing by atomization to adjust the properties of the powders precisely. The findings are also important for steelmaking itself, as the corrosion behavior of refractory material can be better determined.
在不同温度下测量了各种液态电工钢的密度、表面张力和粘度,其硅含量在 3 至 6 质量%之间。密度和表面张力是用最大气泡压力法测定的,而粘度则是用振动手指粘度计和振动坩埚粘度计进行比较研究的。研究结果与文献中已知的模型进行了比较。在此基础上,钢的密度 [ρ] = kg m-3 和表面张力 [σ] = N m-1 可以用公式描述为温度 [θ] = °C 和硅含量 [Si] = 质量%的函数:, .文献中缺乏电工钢高温热物理性能的实验数据。这再次强调了本研究的新颖性和重要性,因为所测定的热物理性质对于广泛的应用至关重要。例如,在通过雾化生产用于增材制造的金属粉末时,它们对于精确调整粉末特性至关重要。研究结果对炼钢本身也很重要,因为可以更好地确定耐火材料的腐蚀行为。
{"title":"Densities, Surface Tensions, and Viscosities of Molten High‐Silicon Electrical Steels with Different Silicon Contents","authors":"Lukas Neubert, Matheus Roberto Bellé, Taisei Yamamoto, Tsuyoshi Nishi, Hidemasa Yamano, Frank Ahrenhold, Olena Volkova","doi":"10.1002/srin.202400237","DOIUrl":"https://doi.org/10.1002/srin.202400237","url":null,"abstract":"Density, surface tension, and viscosity of various liquid electrical steels are measured at different temperatures, varying in their silicon content between 3 and 6 mass%. Density and surface tension are determined using the maximum bubble pressure method, while viscosity is investigated comparatively using a vibrating finger viscometer and an oscillating crucible viscometer. The results are compared with models known from the literature. Based on this, the density of the steel [<jats:italic>ρ</jats:italic>] = kg m<jats:sup>−3</jats:sup> and the surface tension [<jats:italic>σ</jats:italic>] = N m<jats:sup>−1</jats:sup> can be described as a function of temperature [<jats:italic>θ</jats:italic>] = °C and silicon content [Si] = mass% using the equations: , . There is a lack of experimental data in the literature for high‐temperature thermophysical properties for electrical steels. This underlines once again the novelty and significance of this study, as the determined thermophysical properties are essential for a wide range of applications. For instance, they are crucial in the production of metallic powders for additive manufacturing by atomization to adjust the properties of the powders precisely. The findings are also important for steelmaking itself, as the corrosion behavior of refractory material can be better determined.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A physically based mean field model developed to predict the microstructural evolution during the thermomechanical control process of X70 high‐strength low‐alloy (HSLA) steels is presented. The physically based mean field model incorporates a new integrated precipitation and recrystallization model developed to describe the interaction between strain‐induced precipitation of niobium and titanium carbonitrides and static recrystallization of austenite. The integrated model considers an effective Zener pinning force for the multimodal particle size distribution (PSD) of precipitates, an effective grain‐boundary mobility for the solute drag effect of niobium, and an inhomogeneous stored energy for austenite recrystallization. Given a processing route, the model predicts the variation of austenite grain size, recrystallized and precipitated fractions, and evolution of PSDs of precipitates. Model predictions reveal an excellent agreement with experimental grain size measurements and a final average ferrite grain size of 3.81 μm is achieved. The proposed model considers the heterogeneous nature of recrystallization and precipitation and can contribute to the process design of the HSLA and microalloyed steels.
{"title":"A Physically Based Mean Field Model for Strain‐Induced Precipitation and Recrystallization in High‐Strength Low‐Alloy Steels","authors":"Maria‐Ioanna T. Tzini, Gregory N. Haidemenopoulos","doi":"10.1002/srin.202400493","DOIUrl":"https://doi.org/10.1002/srin.202400493","url":null,"abstract":"A physically based mean field model developed to predict the microstructural evolution during the thermomechanical control process of X70 high‐strength low‐alloy (HSLA) steels is presented. The physically based mean field model incorporates a new integrated precipitation and recrystallization model developed to describe the interaction between strain‐induced precipitation of niobium and titanium carbonitrides and static recrystallization of austenite. The integrated model considers an effective Zener pinning force for the multimodal particle size distribution (PSD) of precipitates, an effective grain‐boundary mobility for the solute drag effect of niobium, and an inhomogeneous stored energy for austenite recrystallization. Given a processing route, the model predicts the variation of austenite grain size, recrystallized and precipitated fractions, and evolution of PSDs of precipitates. Model predictions reveal an excellent agreement with experimental grain size measurements and a final average ferrite grain size of 3.81 μm is achieved. The proposed model considers the heterogeneous nature of recrystallization and precipitation and can contribute to the process design of the HSLA and microalloyed steels.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}