Effects of Damage Evolution on Edge Crack Sensitivity in Dual-Phase Steels

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-12 DOI:10.1002/srin.202400178
Niloufar Habibi, Thorsten Beier, Junhe Lian, Berk Tekkaya, Markus Koenemann, Sebastian Muenstermann
{"title":"Effects of Damage Evolution on Edge Crack Sensitivity in Dual-Phase Steels","authors":"Niloufar Habibi,&nbsp;Thorsten Beier,&nbsp;Junhe Lian,&nbsp;Berk Tekkaya,&nbsp;Markus Koenemann,&nbsp;Sebastian Muenstermann","doi":"10.1002/srin.202400178","DOIUrl":null,"url":null,"abstract":"<p>The present study aims to thoroughly investigate the edge-cracking phenomenon in high-strength sheets. Hence, the edge crack sensitivity of three dual-phase steels is studied in various combinations of edge manufacturing and forming processes. Finite element simulations are performed to elaborate the study. In this regard, the Yoshida–Uemori kinematic hardening model is employed to describe the plasticity behavior of the materials under multistep processes. A stress-state fracture model is coupled with this plasticity model to illustrate the distinguished local fracture strains of each material. Moreover, the effects of strain rate and the consequent temperature rise on hardening and damage are taken into account, which play significant roles during shear-cutting. The results show that although the shear-cutting processes are applied at very low speed, the strain rate and induced temperature are still high at the cutting area. The hole expansion results show different fracture behaviors for different cases. In brief, cracking is initiated at a location, which shows the highest damage accumulation during edge manufacturing plus the subsequent forming process. Such a complicated situation can only be successfully predicted by using a computer-aided approach along with proper material modeling, like the applied model in this study.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/srin.202400178","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400178","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aims to thoroughly investigate the edge-cracking phenomenon in high-strength sheets. Hence, the edge crack sensitivity of three dual-phase steels is studied in various combinations of edge manufacturing and forming processes. Finite element simulations are performed to elaborate the study. In this regard, the Yoshida–Uemori kinematic hardening model is employed to describe the plasticity behavior of the materials under multistep processes. A stress-state fracture model is coupled with this plasticity model to illustrate the distinguished local fracture strains of each material. Moreover, the effects of strain rate and the consequent temperature rise on hardening and damage are taken into account, which play significant roles during shear-cutting. The results show that although the shear-cutting processes are applied at very low speed, the strain rate and induced temperature are still high at the cutting area. The hole expansion results show different fracture behaviors for different cases. In brief, cracking is initiated at a location, which shows the highest damage accumulation during edge manufacturing plus the subsequent forming process. Such a complicated situation can only be successfully predicted by using a computer-aided approach along with proper material modeling, like the applied model in this study.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
损伤演变对双相钢边缘裂纹敏感性的影响
本研究旨在深入研究高强度板材的边缘开裂现象。因此,研究了三种双相钢在各种边缘制造和成型工艺组合下的边缘裂纹敏感性。为详细阐述该研究,进行了有限元模拟。在这方面,采用 Yoshida-Uemori 运动硬化模型来描述材料在多步工艺下的塑性行为。应力状态断裂模型与该塑性模型相结合,说明了每种材料不同的局部断裂应变。此外,还考虑了应变速率和随之而来的温度升高对硬化和损伤的影响,这些因素在剪切过程中起着重要作用。结果表明,虽然剪切过程的速度很低,但切削区域的应变率和诱导温度仍然很高。扩孔结果显示了不同情况下的不同断裂行为。简而言之,在边缘制造和随后的成形过程中,开裂发生在损伤累积最严重的位置。只有使用计算机辅助方法和适当的材料建模(如本研究中应用的模型),才能成功预测这种复杂情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1