FSE-RBFNN-based LPF-AILC of finite time complete tracking for a class of time-varying NPNL systems with initial state errors

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Frontiers in Physics Pub Date : 2024-08-22 DOI:10.3389/fphy.2024.1442486
Chunli Zhang, Lei Yan, Yangjie Gao, Junliang Yao, Fucai Qian
{"title":"FSE-RBFNN-based LPF-AILC of finite time complete tracking for a class of time-varying NPNL systems with initial state errors","authors":"Chunli Zhang, Lei Yan, Yangjie Gao, Junliang Yao, Fucai Qian","doi":"10.3389/fphy.2024.1442486","DOIUrl":null,"url":null,"abstract":"The paper proposes a low-pass filter adaptive iterative learning control (LPF-AILC) strategy for unmatched, uncertain, time-varying, non-parameterized nonlinear systems (NPNL systems). To address the difficulty of nonlinear parameterization terms in system models, a new function approximator (FSE-RBFNN), which combines the radial basis function neural network (RBFNN) and Fourier series expansion (FSE), is introduced to model each time-varying nonlinear parameterized function. The adaptive backstepping method is used to design control laws and parameter adaptive laws. In the process of controller design, we may encounter the problem of too many derivatives, which can cause parameter explosions after derivatives. Therefore, we introduce a first-order low-pass filter to solve this problem and simplify the structure of the controller. As the number of iterations increases, the maximum tracking error gradually decreases until it converges to the nearby region, approaching zero within the entire given interval <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mrow><mml:mo stretchy=\"false\">[</mml:mo><mml:mrow><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>T</mml:mi></mml:mrow><mml:mo stretchy=\"false\">]</mml:mo></mml:mrow></mml:math></jats:inline-formula>, according to the Lyapunov-like synthesis. To mitigate the impact of initial state errors, a dynamically changing boundary layer is introduced, along with a series to deal with the unknown error upper bounds. Finally, two simulation examples prove the correctness of the proposed control method.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"8 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1442486","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a low-pass filter adaptive iterative learning control (LPF-AILC) strategy for unmatched, uncertain, time-varying, non-parameterized nonlinear systems (NPNL systems). To address the difficulty of nonlinear parameterization terms in system models, a new function approximator (FSE-RBFNN), which combines the radial basis function neural network (RBFNN) and Fourier series expansion (FSE), is introduced to model each time-varying nonlinear parameterized function. The adaptive backstepping method is used to design control laws and parameter adaptive laws. In the process of controller design, we may encounter the problem of too many derivatives, which can cause parameter explosions after derivatives. Therefore, we introduce a first-order low-pass filter to solve this problem and simplify the structure of the controller. As the number of iterations increases, the maximum tracking error gradually decreases until it converges to the nearby region, approaching zero within the entire given interval [0,T], according to the Lyapunov-like synthesis. To mitigate the impact of initial state errors, a dynamically changing boundary layer is introduced, along with a series to deal with the unknown error upper bounds. Finally, two simulation examples prove the correctness of the proposed control method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 FSE-RBFNN 的 LPF-AILC 对一类具有初始状态误差的时变 NPNL 系统的有限时间完全跟踪
本文针对无匹配、不确定、时变、非参数化非线性系统(NPNL 系统)提出了一种低通滤波器自适应迭代学习控制(LPF-AILC)策略。为解决系统模型中非线性参数化项的难题,引入了一种新的函数近似器(FSE-RBFNN),它结合了径向基函数神经网络(RBFNN)和傅里叶级数展开(FSE),对每个时变非线性参数化函数进行建模。采用自适应反步法设计控制律和参数自适应律。在控制器设计过程中,我们可能会遇到导数过多的问题,导数过多会导致参数爆炸。因此,我们引入一阶低通滤波器来解决这一问题,并简化控制器的结构。随着迭代次数的增加,最大跟踪误差逐渐减小,直至收敛到附近区域,根据类李雅普诺夫综合法,在整个给定区间 [0,T] 内趋近于零。为了减轻初始状态误差的影响,引入了动态变化的边界层,以及一系列处理未知误差上限的方法。最后,两个仿真实例证明了所提控制方法的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
期刊最新文献
Intelligent diagnostic method for developmental hip dislocation Bonner sphere measurements of high-energy neutron spectra from a 1 GeV/u 56Fe ion beam on an aluminum target and comparison to spectra obtained by Monte Carlo simulations Comparative analysis of the influence of different shapes of shaft sections on dust transportation Detection of natural pulse waves (PWs) in 3D using high frame rate imaging for anisotropy characterization Tunable continuous wave Yb:CaWO4 laser operating in NIR spectral region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1