{"title":"High-efficiency and wide-angle metasurface electromagnetic energy harvester","authors":"Anjie Cao, Shuyin Xu, Yeping Huang, Leiting Zhang, Cuijun Liu, Zhansheng Chen","doi":"10.3389/fphy.2024.1423036","DOIUrl":null,"url":null,"abstract":"In today’s era of increasing energy constraints, harnessing the power of electromagnetic waves and converting them into directly usable energy has great potential in the field of renewable energy. This paper presents a highly efficient electromagnetic energy harvester with wide operation angles based on metasurface. The metasurface unit comprises four rotated copper rings plated on a Rogers RT5880 substrate. This unique design incorporates a 3.6 k<jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mi mathvariant=\"normal\">Ω</mml:mi></mml:math></jats:inline-formula> resistor within each of the four-cornered rotating metal rings, effectively emulating the input impedance circuit of a rectifier. Simulation results reveal that the metasurface achieves a remarkable electromagnetic wave harvesting efficiency of up to 92.3% at a frequency of 5.85 GHz. Additionally, it exhibits polarization insensitivity, enhancing its versatility and suitability for wide incident angles, which augments its practicality in various environments. The proposed metasurface energy harvester represents a significant advancement in electromagnetic energy collection technology, offering an efficient and reliable energy harvesting solution that contributes to addressing energy shortages and is applicable across multiple scenarios.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"29 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1423036","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In today’s era of increasing energy constraints, harnessing the power of electromagnetic waves and converting them into directly usable energy has great potential in the field of renewable energy. This paper presents a highly efficient electromagnetic energy harvester with wide operation angles based on metasurface. The metasurface unit comprises four rotated copper rings plated on a Rogers RT5880 substrate. This unique design incorporates a 3.6 kΩ resistor within each of the four-cornered rotating metal rings, effectively emulating the input impedance circuit of a rectifier. Simulation results reveal that the metasurface achieves a remarkable electromagnetic wave harvesting efficiency of up to 92.3% at a frequency of 5.85 GHz. Additionally, it exhibits polarization insensitivity, enhancing its versatility and suitability for wide incident angles, which augments its practicality in various environments. The proposed metasurface energy harvester represents a significant advancement in electromagnetic energy collection technology, offering an efficient and reliable energy harvesting solution that contributes to addressing energy shortages and is applicable across multiple scenarios.
期刊介绍:
Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.