Reverse degree-based topological indices study of molecular structure in triangular ϒ-graphyne and triangular ϒ-graphyne chain

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Frontiers in Physics Pub Date : 2024-08-14 DOI:10.3389/fphy.2024.1422098
Abdul Hakeem, Nek Muhammad Katbar, Hisamuddin Shaikh, Fikadu Tesgera Tolasa, Oshaque Ali Abro
{"title":"Reverse degree-based topological indices study of molecular structure in triangular ϒ-graphyne and triangular ϒ-graphyne chain","authors":"Abdul Hakeem, Nek Muhammad Katbar, Hisamuddin Shaikh, Fikadu Tesgera Tolasa, Oshaque Ali Abro","doi":"10.3389/fphy.2024.1422098","DOIUrl":null,"url":null,"abstract":"Topological indices are mathematical descriptors of the structure of a molecule that can be used to predict its properties. They are derived from the graph theory, which describes the topology of a molecule and its connectivity. The main objective is mathematical modeling and topological properties of ϒ-graphyne. Current research focuses on two structures made from hexagonal honeycomb graphite lattices named triangular ϒ-graphyne and triangular ϒ-graphyne chains. The authors have simultaneously computed the first and second Reverse Zagreb indices, reverse hyper-Zagreb indices, and their polynomials. This research also derives mathematical closed-form formulas for some of its fundamental degree-based molecular descriptors. Researchers have been trying to synthesize a novel carbon form called Graphyne. For over a decade but with no success. Recently, some researchers have made a breakthrough in generating Carbons elusive allotrope and solved a long-standing problem in carbon materials. This wonder material is created to rival the conductivity of graphene but with control. These results opened new ways of research in the fields of semiconductors, electronics and optics. Furthermore, graphical and tabular results will help to investigate the structure-property relationships in γ-graphyne.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"61 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1422098","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological indices are mathematical descriptors of the structure of a molecule that can be used to predict its properties. They are derived from the graph theory, which describes the topology of a molecule and its connectivity. The main objective is mathematical modeling and topological properties of ϒ-graphyne. Current research focuses on two structures made from hexagonal honeycomb graphite lattices named triangular ϒ-graphyne and triangular ϒ-graphyne chains. The authors have simultaneously computed the first and second Reverse Zagreb indices, reverse hyper-Zagreb indices, and their polynomials. This research also derives mathematical closed-form formulas for some of its fundamental degree-based molecular descriptors. Researchers have been trying to synthesize a novel carbon form called Graphyne. For over a decade but with no success. Recently, some researchers have made a breakthrough in generating Carbons elusive allotrope and solved a long-standing problem in carbon materials. This wonder material is created to rival the conductivity of graphene but with control. These results opened new ways of research in the fields of semiconductors, electronics and optics. Furthermore, graphical and tabular results will help to investigate the structure-property relationships in γ-graphyne.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拓扑指数的三角ϒ-石墨烯和三角ϒ-石墨烯链分子结构反向研究
拓扑指数是分子结构的数学描述符,可用来预测分子的性质。拓扑指数源于图论,图论描述了分子的拓扑结构及其连通性。主要目标是建立ϒ-graphyne 的数学模型和拓扑特性。目前的研究重点是由六边形蜂窝石墨晶格制成的两种结构,分别命名为三角形ϒ-石墨烯和三角形ϒ-石墨烯链。作者同时计算了第一和第二反向萨格勒布指数、反向超萨格勒布指数及其多项式。这项研究还推导出了一些基于基本度的分子描述符的数学闭式公式。研究人员一直在尝试合成一种名为石墨烯的新型碳。但十多年来一直没有成功。最近,一些研究人员在生成碳这种难以捉摸的同素异形体方面取得了突破性进展,解决了碳材料领域的一个长期难题。这种神奇的材料可以与石墨烯的导电性相媲美,但却可以控制。这些成果为半导体、电子学和光学领域的研究开辟了新途径。此外,图形和表格结果将有助于研究γ-石墨烯的结构-性能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
期刊最新文献
Intelligent diagnostic method for developmental hip dislocation Bonner sphere measurements of high-energy neutron spectra from a 1 GeV/u 56Fe ion beam on an aluminum target and comparison to spectra obtained by Monte Carlo simulations Comparative analysis of the influence of different shapes of shaft sections on dust transportation Detection of natural pulse waves (PWs) in 3D using high frame rate imaging for anisotropy characterization Tunable continuous wave Yb:CaWO4 laser operating in NIR spectral region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1