Alessandro P. Fantilli, Barbara Frigo, Farmehr M. Dehkordi
{"title":"Optimal content of bio-fibers in structural ice","authors":"Alessandro P. Fantilli, Barbara Frigo, Farmehr M. Dehkordi","doi":"10.1617/s11527-024-02455-2","DOIUrl":null,"url":null,"abstract":"<div><p>The use of ice as structural material has two main concerns: the low strength and the brittle failure of the structures. With the aim of finding a solution to these problems, an experimental campaign, performed on fiber-reinforced ice (FRI) samples, made with plain water and bio-fibers, is presented in this paper. In total, 12 ice prisms were cast at − 18 °C with a different content of fibers, and then tested in three-point bending and uniaxial compression. Test results indicate that the presence of a reinforcement increases both flexural and compressive strength with respect to plain ice. Moreover, FRI is a tougher material, as multiple cracking and deflection hardening behavior can be observed in the flexural tests. However, the mechanical performances of plain ice are not always enhanced by the fiber-reinforcement. Therefore, an empirical model, capable of predicting the optimal content of bio-fibers, is also proposed.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02455-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02455-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of ice as structural material has two main concerns: the low strength and the brittle failure of the structures. With the aim of finding a solution to these problems, an experimental campaign, performed on fiber-reinforced ice (FRI) samples, made with plain water and bio-fibers, is presented in this paper. In total, 12 ice prisms were cast at − 18 °C with a different content of fibers, and then tested in three-point bending and uniaxial compression. Test results indicate that the presence of a reinforcement increases both flexural and compressive strength with respect to plain ice. Moreover, FRI is a tougher material, as multiple cracking and deflection hardening behavior can be observed in the flexural tests. However, the mechanical performances of plain ice are not always enhanced by the fiber-reinforcement. Therefore, an empirical model, capable of predicting the optimal content of bio-fibers, is also proposed.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.