Exploring the ability of regional extrapolation for precipitation nowcasting with deep learning

IF 1.2 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorologische Zeitschrift Pub Date : 2024-08-13 DOI:10.1127/metz/2024/1189
Tarek Beutler, Annette Rudolph, Daniel Goehring, Nikki Vercauteren
{"title":"Exploring the ability of regional extrapolation for precipitation nowcasting with deep learning","authors":"Tarek Beutler, Annette Rudolph, Daniel Goehring, Nikki Vercauteren","doi":"10.1127/metz/2024/1189","DOIUrl":null,"url":null,"abstract":"Precipitation nowcasting refers to the prediction of precipitation intensity in a local region and in a short timeframe up to 6 hours. The evaluation of spatial and temporal information still challenges state-of-the-art numerical weather prediction models. The increasing possibilities to store and evaluate data combined with the advancements in the developments of artificial intelligence algorithms make it natural to use these methods to improve precipitation nowcasting. In this work, a Trajectory Gated Recurrent Unit (TrajGRU) is applied to radar data of the German Weather Service. The impact of finetuning a network pretrained at a different location and for several precipitation intensity thresholds with respect to the training time is evaluated. In cases with little availability of training data at the target location, for example when heavy rainfall is rare, the finetuned model can benefit from the original model performance at the pretraining location. Furthermore, the skill scores for the different thresholds are shown for a prediction time up to 100 minutes. The results highlight promising regional extrapolation capabilities for such neural networks for precipitation nowcasting.","PeriodicalId":49824,"journal":{"name":"Meteorologische Zeitschrift","volume":"83 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorologische Zeitschrift","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1127/metz/2024/1189","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Precipitation nowcasting refers to the prediction of precipitation intensity in a local region and in a short timeframe up to 6 hours. The evaluation of spatial and temporal information still challenges state-of-the-art numerical weather prediction models. The increasing possibilities to store and evaluate data combined with the advancements in the developments of artificial intelligence algorithms make it natural to use these methods to improve precipitation nowcasting. In this work, a Trajectory Gated Recurrent Unit (TrajGRU) is applied to radar data of the German Weather Service. The impact of finetuning a network pretrained at a different location and for several precipitation intensity thresholds with respect to the training time is evaluated. In cases with little availability of training data at the target location, for example when heavy rainfall is rare, the finetuned model can benefit from the original model performance at the pretraining location. Furthermore, the skill scores for the different thresholds are shown for a prediction time up to 100 minutes. The results highlight promising regional extrapolation capabilities for such neural networks for precipitation nowcasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习探索降水预报的区域外推能力
降水预报是指在短时间内(最多 6 小时)对局部地区的降水强度进行预测。对空间和时间信息的评估仍然是对最先进的数值天气预报模式的挑战。存储和评估数据的可能性越来越大,再加上人工智能算法的发展,利用这些方法来改进降水预报是很自然的。在这项工作中,轨迹门控循环单元(TrajGRU)被应用于德国气象局的雷达数据。评估了在不同地点和不同降水强度阈值下对网络进行预训练的微调对训练时间的影响。在目标地点训练数据较少的情况下,例如暴雨较少的情况下,经过微调的模型可从预训练地点的原始模型性能中获益。此外,还显示了预测时间最长达 100 分钟时不同阈值的技能得分。结果凸显了这种神经网络在降水预报中的区域外推能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Meteorologische Zeitschrift
Meteorologische Zeitschrift 地学-气象与大气科学
CiteScore
2.80
自引率
8.30%
发文量
19
审稿时长
6-12 weeks
期刊介绍: Meteorologische Zeitschrift (Contributions to Atmospheric Sciences) accepts high-quality, English language, double peer-reviewed manuscripts on all aspects of observational, theoretical and computational research on the entire field of meteorology and atmospheric physics, including climatology. Manuscripts from applied sectors such as, e.g., Environmental Meteorology or Energy Meteorology are particularly welcome. Meteorologische Zeitschrift (Contributions to Atmospheric Sciences) represents a natural forum for the meteorological community of Central Europe and worldwide.
期刊最新文献
High-resolution ensemble LES energy balance closure study of the LITFASS-2003 campaign Exploring the ability of regional extrapolation for precipitation nowcasting with deep learning Characteristics of rain cells over the northwest Pacific warm pool Observations and forecasting of a low visibility event in Hong Kong on New Year’s Eve Effect of volcanic sulfur dioxide on solar UV irradiance during the 2023 Fagradalsfjall eruption in Reykjavík, Iceland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1